Laboratory testing services
Browse by category or use filters to find the tests you need.ToF-ERDA measurement
Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA) measurement for determining the elemental concentrations of thin films. ToF-ERDA is capable of identifying all elements, including various hydrogen isotopes. It provides elemental depth profiles by determining the concentration of each element at different depths within a sample. Typically, the method achieves detection limits ranging from 0.1 to 0.5 atomic percent and depth resolution between 5 and 20 nm. It is suitable for analyzing films with thicknesses between 20 and 500 nm. For accurate measurements, the sample surface should be smooth, with a roughness of less than 10 nm. The method is inherently quantitative when analyzing thin films on typical substrates, such as silicon (Si), gallium nitride (GaN), silicon carbide (SiC), gallium arsenide (GaAs), or indium phosphide (InP). So, reference samples are not needed to obtain quantitative results. The technique is particularly useful when analyzing light elements due to its good detection limits. In addition to typical ToF-ERDA measurements, we also offer LI-ERDA (also referred to as Foil ERDA) for more precise determination of hydrogen isotopes. The detection limits with LI-ERDA are typically around 0.01 atomic percent, and depth resolutions of ~1nm can be achieved. LI-ERDA only allows detection of hydrogen isotopes.
499–569 €
Read moreSEM-EDX imaging
Imaging of the sample using a scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDX or EDS). Typically, several images are taken with varying magnifications to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). Non-conductive samples can be prepared with a metallic coating. For cross-section measurement, additional preparation might be needed: FIB, BIB, or freeze fracturing.
157–609 €
Read moreSEM imaging
Imaging of the sample using scanning electron microscopy (SEM). Typically, several images are taken with varying magnifications to get a good overview of the sample. Non-conductive samples can be prepared with a metallic coating to allow imaging. For cross-section measurement, additional preparation might be needed: FIB, BIB or freeze fracturing. If compositional analysis is also needed, please see the SEM-EDX measurement.
107–609 €
Read moreVPD ICP-MS
VPD ICP-MS allows the determination of trace metal contamination on the surface of wafers. The full surface of the wafer is scanned during the analysis. VPD ICP-MS is performed using acid to dissolve the top surface of the wafer before the determination of elemental concentrations with ICP-MS. Please note that lighter elements, such as H, C, N, O, and F, cannot be analyzed. We offer different analysis packages for a wide range of elements: 30 elements: Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Ga, Ge, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Sn, Sr, Ti, W, V, Zn, Zr, 41 elements: Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Ga, Ge, Fe, Hf, Ir, K, Li, Mg, Mn, Mo, Na, Nb, Ni, Pb, Re, Sb, Sn, Sr, Ta, Te, Th, Ti, Tl, U, W, V, Y, Zn, Zr, Additional noble metals: Ag, Au, Pt, Pd, Additional elements are available upon request, Detection limits are in the ppm–ppb range (107–1010at/cm2). This measurement is primarily intended for 100, 150, 200, and 300 mm bare-silicon wafers, but we also offer ICP-MS analyses for other wafer sizes and thin films. The most typically used instruments include the following: Perkin-Elmer NexION 350S ICP-MS, Perkin-Elmer Sciex ELAN 6100 DRC II ICP-MS, Thermo Fisher iCAP TQe ICP-MS, Finnigan element2 ICP-MS. Contact us for more information and to request a quote.
378–870 €
Read moreXRR of thin films or coatings
X-Ray Reflectometry (XRR) analysis is used to measure the density (g/cm3), thickness (nm), and roughness (nm) of thin films. The method is applicable to the characterization of single- or multilayered thin films, as it provides information on the thickness and density of individual layers of the sample material as well as the roughness of the interphases. Greatest accuracy for XRR thickness measurements is generally achieved for samples containing 1-150 nm thick surface layers with under 5 nm RMS roughness. Thicker films and coatings with rougher surfaces can also be characterized, but the accuracy of thickness determination decreases as the thickness and roughness of the film or film stack increase. >150 mm wafers are typically cut to fit the sample holder. Please let us know if you need testing for larger wafers that cannot be cut into pieces. The available temperature range for XRR measurements is 25-1100 °C, and crystallinity can be studied as a function of temperature. The measurements can be performed under a normal atmosphere, inert gas, or vacuum. Measurements are typically performed using one of the following instruments: Rigaku SmartLab, Panalytical X'Pert Pro MRD, Bruker D8 Discover. Please let us know if you have a preference for a specific instrument.
183–271 €
Read moreAFM surface roughness measurement
In this analysis, the surface roughness value (RMS) of the sample is determined with atomic force microscopy (AFM), typically with the Bruker Dimension Icon as the instrument. Three measurement points from the sample are included in a typical analysis. The measurement area is 5 x 5 micrometers, if not otherwise agreed. In addition to the RMS value, a 2D image, a 3D image, and raw data will be included in the test report.
220–349 €
Read moreXRR + GI-XRD of thin films
The combination of grazing incidence X-ray diffraction (GI-XRD) and X-ray reflectometry (XRR) analysis is used to determine the following properties of thin film samples: XRR density (g/cm3), thickness (nm),, roughness (nm). GI-XRD XRD spectrum and identification of the phase(s), Crystallinity, crystallite size, lattice parameters, and strain of the phase. NOTE: These parameters are determined if samples are highly crystalline. Determination may not succeed if crystallinity is insufficient.. Notes about suitable samples XRR - The method is applicable to the characterization of single- or multilayered thin films, as it provides information on the thickness and density of individual layers of the sample material as well as the roughness of the interphases. The greatest accuracy for XRR thickness measurements is generally achieved for samples containing 1-150 nm thick surface layers with under 5 nm RMS roughness. Thicker films and coatings with rougher surfaces can also be characterized but, the accuracy of thickness determination decreases as the thickness and roughness of the film or film stack increases. GI-XRD - the method is generally applicable for samples that are suitable for XRR. The only special criterion is crystallinity - the investigated phases must be crystalline to produce XRD data. Available conditions By default, the GI-XRD and XRR measurements are performed under ambient conditions, but temperatures from 25 to 1,100 °C can be used, and the properties studied as a function of temperature. Measurements can also be done under inert gas or vacuum if needed. Please contact our experts if you need XRR and/or GI-XRD measurements or if you need more information on the analysis or suitable samples.
349–499 €
Read moreGI-XRD of thin films
Grazing incidence X-ray diffraction (GI-XRD) measurement for thin films and surface layers. The measurement provides the following information: XRD spectrum and identification of the phase(s), Crystallinity, crystallite size, lattice parameters, and strain of the phase. NOTE that these parameters are determined if the samples are highly crystalline. It may not be possible to determine them if the crystallinity is insufficient.. Best GI-XRD results are typically achieved for samples containing up to 300 nm thick surface layers with under 10 nm RMS roughness. Thicker films and coatings with rougher surfaces can also be characterized, but the quality of the data is generally lower for rough samples, and the sample properties below 300 nm depths are typically not reflected in the results. One of the following instruments is typically used to perform the measurements: Rigaku SmartLab, Panalytical X'Pert Pro MPD, Bruker D8 Discover, Malvern Empyrean. By default, the GI-XRD is conducted in ambient conditions, but temperatures of 25 to 1100 °C can be used to study crystallinity as a function of temperature. The measurements can also be performed under inert gas or vacuum if needed. Please contact our experts to discuss the available temperature and atmosphere combinations.
183–271 €
Read moreCan’t find what you’re looking for?
Only a fraction of our services are listed on the website. Contact us to get access to all services.
Specific surface area (BET)
BET (Brunauer–Emmett–Teller) analysis to determine the specific surface area of solid materials.
141–243 €
Read moreTEM-EDX imaging
Imaging of the sample with transmission electron microscopy (TEM) and determination of the elemental composition of the sample using electron dispersive X-ray spectroscopy (EDX or EDS). Several images with varying magnifications are taken to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). For solid samples, the analysis often requires FIB preparation, which is priced separately. HR-TEM can also be provided. Contact us for more details about the analysis options.
607–1,477 €
Read moreTEM imaging
Imaging of the sample with transmission electron microscope (TEM). Typically, several images with varying magnifications are taken to get a good overview of the sample. TEM allows nm-resolution images. Solid samples often require FIB preparation before analysis. HR-TEM can also be provided. Contact us for more details.
532–1,410 €
Read moreEllipsometry measurement
Ellipsometry is an optical technique that characterizes polarized light reflected from a sample's surface. It can measure the thickness or the refractive index of a layer. Do not hesitate to contact our experts for more details.
229–359 €
Read moreSpecific surface area + pore size analysis
N2 adsorption analysis to determine specific surface area, pore size, and total pore volume of solid materials.
163–361 €
Read moreX-ray photoelectron spectroscopy (XPS) depth profiling
In XPS depth profiling, ion gun etching cycles and XPS analysis cycles are alternated to obtain semi-quantitative information on the elemental composition (at.%) of the sample as a function of depth. The binding states of atoms can also be analyzed as a function of depth to determine the chemistry of the sample and its variations with depth. XPS depth profiling is a destructive technique with an analysis area diameter ranging from 10 µm to several 100 µm. Sputtering is done with an Ar-cluster GCIB ion beam or Ar monoatomic ions, and XPS measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000.
840–1,538 €
Read moreX-ray photoelectron spectroscopy (XPS)
XPS is a semi-quantitative technique used to measure the elemental composition of material surfaces. In addition, it can also determine the binding state of the atoms. XPS is a surface-sensitive technique. Typical probing depth is 3-9 nm, and detection limits range roughly between 0.1 and 1 atomic %. XPS can measure elements from Li to U. The elemental composition is reported in at.% and measured on 1 area of a few 100 µm. Upon request, we can measure smaller areas or depth profiles, and a binding state determination can also be provided. Measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000. Synchrotron XPS is also available. Contact us for more information and a quote for your project.
438–960 €
Read moreFocused ion beam (FIB) preparation
The focused ion beam (FIB) technique is used to prepare samples for electron microscopy. It allows very precise cutting of samples to observe them by TEM or SEM imaging. We are happy to provide a quote for FIB preparation on its own, as well as FIB-TEM or FIB-SEM analysis.
589–1,228 €
Read moreToF-SIMS measurement
Time of flight - secondary ion mass spectrometry (ToF-SIMS) is a highly sensitive analytical technique that is used for elemental and molecular analysis, as well as elemental mapping of solid samples. The technique is primarily used for detailed surface analysis of solid materials, whether organic, inorganic, polymeric, or biological. It can also be used as a depth profiling method with dual ion beams to check for impurities or dopants. All elements from hydrogen to uranium can be detected with concentrations in the parts-per-billion (ppb) range. Compared to SIMS, ToF-SIMS provides only qualitative results.
499–1,499 €
Read moreBroad Ion Beam (BIB) sample preparation
Broad Ion Beam (BIB) sample preparation enables the creation of surfaces or cross-sections that are ideal for imaging with scanning electron microscopy (SEM). This method utilizes a focused, high-energy ion beam to etch or mill the sample material with precision, ensuring minimal damage to the surface structure. Typical use cases Preparation of cross-sections for SEM to analyze thin films, coatings, and layered structures., Preparation of samples for SEM imaging of defects, grain boundaries, or interfaces in advanced materials.. Suitable samples Thin films deposited on various substrates, such as Si wafers, with thicknesses ranging from a few dozen nanometers to several micrometers., Bulk materials, including metals, ceramics, polymers, and composites., Samples requiring precise structural analysis without introducing thermal or mechanical damage.. Limitations Not suitable for materials with extreme sensitivity to ion bombardment., Limited applicability for very large samples due to equipment constraints., Potential for slight ion-induced alterations in ultra-sensitive materials.. Related techniques For site-specific thinning or preparation of samples for transmission electron microscopy (TEM), focused ion beam (FIB) sample preparation is used., Freeze fracturing can often be used for thin organic samples instead of BIB to save money..
176–371 €
Read moreContact angle and surface energy
Contact angle measurement is a technique used to assess the wettability of a surface by measuring the angle between a liquid droplet and the surface. This angle is influenced by the surface energy of the solid and the surface tension of the liquid. A low contact angle indicates a strong interaction between the liquid and the surface and a high contact angle low interaction between the two. A low contact angle is typically desired for coating applications to ensure good wettability (i.e. spreadability) of the coating on the surface. A high contact angle, on the other hand, is preferred for surfaces that are supposed to repel certain kinds of liquids (e.g. hydrophobic coatings). By measuring the contact angle between a surface and multiple liquids you may calculate the surface energy of the substrate. Multiple theories exist for the calculation of surface energy, which is a numeric representation of the total energy of the surface. These include the Owens-Wendt-Rabel-Kaelble (OWRK)/Fowkes, Acid-base, Wu, Schultz, Zisman, and Equation of State methods. Contact angle and surface energy are important parameters in the characterization of paints, coatings, printing inks, and the substrates they are applied on. Additionally, this technique can be used to assess the performance of protective or adhesion-promoting coatings and technologies. The price includes three analyses with two liquids, typically water and diiodomethane, with a contact angle device equipped with surface correction. Practically any liquid can be used as long as the liquid does not chemically react with the surface and the surface tension of the liquid is known. Additionally, almost any non-hazardous and flat material can be used as the substrate.
240 €
Read moreAFM surface imaging
During this analysis, the surface of a smooth and hard sample is imaged with an atomic force microscope (AFM). Topological images are typically provided from three locations around the sample. The measurement area is 5 x 5 micrometers, if not otherwise agreed. Measurements are typically done using the following instrument: Bruker Dimension Icon.
220–349 €
Read morePowder XRD measurement - Qualitative analysis
Qualitative or comparative analysis of crystalline powders using X-ray diffraction (XRD). The analysis is only suitable for materials with at least one crystalline phase.
97–241 €
Read moreNano scratch test
ASTM C1624, ASTM D2197, ASTM D5178, …
Nano scratch test of thin film samples. Typical measurement includes an overview image of the scratch track (surface damage) and determination of critical load values.
269–358 €
Read moreOptical profilometry
Measurement of surface profile, roughness or edge sharpness by optical profilometry.
120–360 €
Read moreCrystallographic structure analysis with EBSD
Electron backscatter diffraction (EBSD) is an SEM-based technique used to determine crystalline materials' crystallographic orientation, phase, and grain structures. The method is typically used for failure analysis and microstructure analysis of metals, ceramics, and alloys. Sample requirements: EBSD is suitable for flat, polished crystalline samples, including metals, ceramics, and thin films (50–500 nm). We offer polishing for rough samples. Non-conductive samples may require a conductive coating.
Read more
RBS measurement
Rutherford Backscattering Spectrometry (RBS) can be used to measure the composition of solid samples quantitatively at the surface as well as depth profiling. RBS is used for the analysis of heavy elements and can be combined with ToF-ERDA when lighter elements also need to be analyzed. Elements with similar mass can be difficult to differentiate.
499–569 €
Read moreGroup delay dispersion (GDD) and group velocity dispersion (GVD)
Group delay dispersion (GDD) and group velocity dispersion (GVD) are critical parameters for understanding how the propagation time and speed of light pulses change with frequency or wavelength as they travel through transmitting media, such as glass optics, or interact within the layers of thin-film coatings. Group delay refers to the time delay experienced by light of various frequencies, while group velocity is the speed at which the envelope of a pulse propagates through a medium. GDD and GVD characterize the rate at which group delay and group velocity, respectively, vary with the frequency or wavelength of light. GDD and GVD are expressed in units of time squared, typically in femtoseconds squared (fs2). Both can be measured using a white light interferometer. The measurement conditions for which we can perform the test are outlined below. For a 1" sample Reflection optics AOI: 0° & 5-70°, Transmission AOI: 0-70°. For a 2" sample Reflection optics AOI: 5-70° (0° could be possible, discuss with expert), Transmission AOI: 0-70°. Spectral coverage: 400-1060 nm (VIS/NIR basic version), 250-1060 nm (UV/VIS/NIR version), 900-2400 nm (IR version). To carry out the testing, the following measurement details and sample information should be available: Sample matrix: Substrates, coating, etc. , Reflection/transmission angle of incidence: Reflection AOI of 45°, Transmission AOI of 45°, etc., Polarization: p, s, N/A, Working wavelength range, Measurement points: How many and where in the sample?, Expected GDD/GVD.
496–1,499 €
Read moreLA-ICP-MS of thin film samples
Determination of metal concentrations on semiconductors (coated or uncoated wafers) using LA-ICP-MS. The standard analysis package includes the quantification of the following elements: Ca, Cr, Cu, Co, Er, Fe, Ge, Pb, Mn, Mo, Ni, K, Na, Sn, Ti, Ta, Zn, Bi, Au, Sn, V, Sr, and Y. We also offer a 70-element package, where the following elements are quantified; Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, and Zr. Values will be reported in ppm (μg/g). Analysis of other elements outside of these packages may be possible. Contact us for details.
827–1,289 €
Read moreAES measurement
Auger Electron Spectroscopy (AES) is a surface-sensitive technique (3-9 nm) used for compositional analysis and depth profiling, providing data on the elemental composition in depth. Secondary electron images can also be provided. AES is a very useful technique to measure patterns since it has a beam size that can go down to a few nm.
438–960 €
Read moreSi wafer organic contamination by ATD GC-MS
SEMI MF 1982-1103
Automated thermal desorption-gas chromatography-mass spectrometry (ATD-GC-MS) is a highly sensitive method for wafer surface organic contamination analysis, providing low detection limits and a wide range of organic contaminant analysis capabilities. The analysis can be performed following the SEMI MF 1982-1103 standard.
758–997 €
Read moreType of testing
Industry or material
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.