Laboratory testing services

Browse by category or use filters to find the tests you need.

Biogenic or biobased carbon content according to ASTM D6866

ASTM D6866
Measurement of biogenic or biobased carbon in the material or product as a percent of the total carbon or total organic carbon in the product. ASTM D6866 outlines two ways of expressing the proportion of material that originates from renewable resources. Biogenic carbon content indicates the proportion of total carbon (TC) originating from renewable resources. Alternatively, inorganic carbon can be removed before testing, and the result is then expressed in relation to total organic carbon (TOC), giving the biobased carbon content. An additional cost applies to the removal of inorganic carbon. The price is for non-volatile samples. If your sample is volatile, please discuss the suitability of your sample type with our experts. Please also note that we cannot accept samples that contain artificial carbon-12, carbon-13, or carbon-14 isotopes because they will cause damage to the equipment. Note! The results obtained for gaseous emissions should always be expressed as "biogenic carbon content" because the initial step of converting carbon to gaseous CO2 cannot be done when the carbon is already in gaseous form. Biobased carbon content determination by ASTM D6866 does not reveal how much of the sample's total weight originates from renewable sources. This can be estimated, however, by combining data on biobased carbon content with information on the total carbon content of the product. Biobased content measurement by EN 16785-1 may also be considered as an alternative.
407–686 €
Read more

Powder XRD measurement - Quantitative analysis

Phase identification and quantification (Rietveld analysis) of a crystalline powder material using X-ray diffraction (XRD). The analysis can also provide unit cell dimensions. The analysis is only suitable for materials with at least one crystalline phase. The quantification accuracy is roughly 0.1 %, depending on the sample matrix and the phase in question. The available temperature range for XRD measurements is 25-1100 °C and the crystallinity can be studied as a function of temperatures. The measurements can be done under a normal atmosphere, inert gas, or vacuum. Please contact our experts to discuss the available temperature and atmosphere combinations. Please mention which crystalline phases your material contains and which ones are you interested in quantifying when requesting testing. However, the method can be applied to unknown phases as well. Either a tabletop or a synchrotron XRD can be used to perform the measurements.
189–569 €
Read more

CHNOS analysis of organic materials

Determination of carbon, hydrogen, nitrogen, sulfur, and oxygen content of an organic sample. CHNS analysis (”LECO analysis”) is performed using a flash combustion method, where the sample is combusted under 25 kPa of O2 at an elevated temperature (1000 °C), followed by gas chromatography separation and detection using a thermal conductivity detector. Oxygen is analyzed by reduction on granulated carbon at 1480 °C, utilizing high-temperature thermal decomposition and conversion of oxygen into carbon monoxide before gas chromatography separation and detection with a thermal conductivity detector. The sample can be either solid or liquid, but water in the sample affects the results. In the case of aqueous samples, it is possible to dry the sample before analysis. The price includes two parallel measurements. The results are reported as wt-% of the initial sample. The ash, drying and dry loss measurements will increase the minimum required sample material need to 300 mg. The analysis gives the total carbon, hydrogen, nitrogen, sulfur, and oxygen content of the material, but it does not identify any chemical structures. The measurement can be combined with other methods, such as GC-MS, 1H, and 13C NMR, to perform substance structure identification. Possible element packages: O, CHNS, and CHNOS.
119–415 €
Read more

Identification of chemical groups with FTIR (solid samples)

Qualitative identification of chemical groups in solid samples by Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Results will be delivered as an FTIR spectrum. In addition, a comparison to an FTIR library will be provided. The method is not quantitative, but it can be used to identify the main chemical components of the sample.
170 €
Read more

Elemental analysis of solid and liquid samples with XRF

DIN 51418-1-08, EN 15309
XRF is a quantitative and qualitative method that can be used to analyze solid and liquid materials. This method is intended for a standard screening of homogeneous materials that do not require special sample preparation, precautions, or have any other special requirements. Wavelength-dispersive XRF (WDXRF) is used to perform the measurements unless energy-dispersive XRF (EDXRF) is specifically requested.
189–299 €
Read more

ToF-ERDA measurement

Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA) measurement for determining the elemental concentrations of thin films. ToF-ERDA is capable of identifying all elements, including various hydrogen isotopes. It provides elemental depth profiles by determining the concentration of each element at different depths within a sample. Typically, the method achieves detection limits ranging from 0.1 to 0.5 atomic percent and depth resolution between 5 and 20 nm. It is suitable for analyzing films with thicknesses between 20 and 500 nm. For accurate measurements, the sample surface should be smooth, with a roughness of less than 10 nm. The method is inherently quantitative when analyzing thin films on typical substrates, such as silicon (Si), gallium nitride (GaN), silicon carbide (SiC), gallium arsenide (GaAs), or indium phosphide (InP). So, reference samples are not needed to obtain quantitative results. The technique is particularly useful when analyzing light elements due to its good detection limits. In addition to typical ToF-ERDA measurements, we also offer LI-ERDA (also referred to as Foil ERDA) for more precise determination of hydrogen isotopes. The detection limits with LI-ERDA are typically around 0.01 atomic percent, and depth resolutions of ~1nm can be achieved. LI-ERDA only allows detection of hydrogen isotopes.
499–569 €
Read more

SEM imaging

Imaging of the sample using scanning electron microscopy (SEM). Typically, several images are taken with varying magnifications to get a good overview of the sample. Non-conductive samples can be prepared with a metallic coating to allow imaging. For cross-section measurement, additional preparation might be needed: FIB, BIB or freeze fracturing. If compositional analysis is also needed, please see the SEM-EDX measurement.
107–609 €
Read more

1H NMR spectroscopy

1H NMR spectroscopic measurement for samples that can be readily dissolved in deuterated solvents. The price includes sample preparation, deuterated solvent (D2O, DMSO-d, or CDCl3), NMR tube, measurement, and basic data processing. The processed spectrum is delivered as an image file. Additional information and raw data can be provided upon request. Please contact Measurlabs' experts if your samples require the use of other than above mentioned deuterated solvent or special measurement conditions, such as very high temperatures or long measurement times.
202 €
Read more

Can’t find what you’re looking for?

Only a fraction of our services are listed on the website. Contact us to get access to all services.

Substances of very high concern (SVHC) analysis

The substances of very high concern (SVHC) analysis provides comprehensive material screening for SVHC substances as listed in the Registration, Evaluation, and Authorization of Chemical Substances (REACH). The maximum allowed concentration of any substance on the SVCH list is 0.1 mass-%. If the product contains more than 0.1% w/w of an SVHC substance, ECHA has to be notified and information on the safe use of the article must be provided to customers upon request. Contact us to request a quote for screening your material for SVHCs. The price of the analysis depends on the sample type.
400–600 €
Read more

13C NMR spectroscopy

Carbon-13 NMR spectroscopy measurement for samples that can be dissolved in deuterated solvents. The price includes sample preparation, deuterated solvent (D2O, DMSO-d, or CDCl3), NMR tube, measurement, and basic data processing. The results are delivered as an image file containing the NMR spectrum. Additional information and raw data can be provided upon request. Please contact our experts if your samples require the use of other than the above-mentioned deuterated solvents or atypical measurement conditions, such as very high temperatures and/or long measurement times.
321 €
Read more

Specific surface area (BET)

BET (Brunauer–Emmett–Teller) analysis to determine the specific surface area of solid materials.
141–243 €
Read more

TEM-EDX imaging

Imaging of the sample with transmission electron microscopy (TEM) and determination of the elemental composition of the sample using electron dispersive X-ray spectroscopy (EDX or EDS). Several images with varying magnifications are taken to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). For solid samples, the analysis often requires FIB preparation, which is priced separately. HR-TEM can also be provided. Contact us for more details about the analysis options.
607–1,477 €
Read more

Karl-Fischer titration of solvent samples

DIN 51777 Verfahren A, ISO 12937
Karl Fischer titration is a classic titration method in chemical analysis that uses coulometric or volumetric titration to determine trace amounts of water in a sample. Please note that aldehydes and/or ketones in the sample severely disturb the KF titration. If the sample material includes these substances, please contact us before making an order.
95 €
Read more

TEM imaging

Imaging of the sample with transmission electron microscope (TEM). Typically, several images with varying magnifications are taken to get a good overview of the sample. TEM allows nm-resolution images. Solid samples often require FIB preparation before analysis. HR-TEM can also be provided. Contact us for more details.
532–1,410 €
Read more

Volatile organic compound (VOC) emissions from solids and liquids

ISO 16000-6
Determination of the amount of volatile organic compounds (VOC) released by solid or liquid samples. The measurement is performed by placing the investigated sample in a chamber, through which nitrogen is flushed. The nitrogen is led through an absorption cartridge, which traps the VOC compounds. Upon completion of the gas collection, the trapped VOCs are analyzed with thermal desorption-gas chromatography (TD-GC). The measurement can either be performed at ambient temperature, or the sampling chamber can be heated.
409 €
Read more

Metal screening by ICP-SFMS (semi-quantitative)

This metal screening analysis includes the semi-quantitative determination of 70 elements. The method can be used, for example, to determine the background concentrations of metals in environmental samples or to study the elemental distribution of unknown samples. Screening is also often performed to assess which metals should be analyzed by a quantitative method. The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. A semi-quantitative determination of the following elements is included: Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr. However, please note that some elements may not be determinable due to matrix interference. During this semi-quantitative analysis, the instrument is calibrated for about 30 elements and the rest of the analytes are quantified using sensitivity factors for calibrated elements with similar mass and first ionization potential considering isotope abundances. Quantitative analysis is also available at an additional price. During this analysis, all elements are calibrated (excluding halogens and Os). Please ask for an offer for this service.
753 €
Read more

Specific surface area + pore size analysis

N2 adsorption analysis to determine specific surface area, pore size, and total pore volume of solid materials.
163–361 €
Read more

X-ray photoelectron spectroscopy (XPS) depth profiling

In XPS depth profiling, ion gun etching cycles and XPS analysis cycles are alternated to obtain semi-quantitative information on the elemental composition (at.%) of the sample as a function of depth. The binding states of atoms can also be analyzed as a function of depth to determine the chemistry of the sample and its variations with depth. XPS depth profiling is a destructive technique with an analysis area diameter ranging from 10 µm to several 100 µm. Sputtering is done with an Ar-cluster GCIB ion beam or Ar monoatomic ions, and XPS measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000.
840–1,538 €
Read more

Total fluorine content in plastic

EN 15408
Determination of total fluorine (F) content in plastic according to the EN 15408 mod. method. The fluorine content of the sample is obtained using oxygen bomb combustion treatment followed by ion chromatography (IC). Possible sample preparation, such as grinding into smaller particles, is available at an extra cost. This method can also be used to determine the total content of S, Cl, and Br. The results will be reported in mg/kg.
248 €
Read more

X-ray photoelectron spectroscopy (XPS)

XPS is a semi-quantitative technique used to measure the elemental composition of material surfaces. In addition, it can also determine the binding state of the atoms. XPS is a surface-sensitive technique. Typical probing depth is 3-9 nm, and detection limits range roughly between 0.1 and 1 atomic %. XPS can measure elements from Li to U. The elemental composition is reported in at.% and measured on 1 area of a few 100 µm. Upon request, we can measure smaller areas or depth profiles, and a binding state determination can also be provided. Measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000. Synchrotron XPS is also available. Contact us for more information and a quote for your project.
438–960 €
Read more

Anions in soil, sludge, sediment and water samples (ISO 10304-1, EN 16192)

EN 16192, ISO 10304-1
Determination of bromide, fluoride, chloride, nitrate, nitrite, and sulfate (Br-, F-, Cl-, NO2-, NO3- ja SO42-) in soil, sludge, sediment, and water samples with ion chromatography. For soil, sludge, and sediment, the analysis is carried out after a water extraction. Ask about the price for other solid matrices and more challenging aqueous matrices. Please store the samples in refrigerated conditions and in gas-sealed containers.
113 €
Read more

Metals in solid chemicals (Co, Si, P, S, B, Na)

Determination of the concentrations of Co, Si, P, S, B, and Na in solid chemicals. This method is meant for chemicals like Co(NO3)2. The results include the concentration of the main component (Co) and the concentrations of selected impurities.
306 €
Read more

Polycyclic aromatic hydrocarbon (PAH) analysis of solid samples

GC-MS analysis of 16 PAH compounds, which are listed as high-priority pollutants by the U.S. Environmental Protection Agency (EPA). The analyzed PAH compounds are: naphthalene [CAS: 91-20-3], acenaphthylene [CAS: 208-96-8], acenaphthene [CAS: 83-32-9], fluorene [CAS: 86-73-7], phenanthrene [CAS: 85-01-8], anthracene [CAS: 120-12-7], fluoranthene [CAS: 206-44-0], pyrene [CAS: 129-00-0], benz(a)anthracene [CAS: 56-55-3], chrysene [CAS: 218-01-9], benzo(b)fluoranthene [CAS: 205-99-2], benzo(k)fluoranthene [CAS: 207-08-9], benzo (a) pyrene [CAS: 50-32-8], dibenzo(ah)anthracene [CAS: 53-70-3], benzo (ghi) perylene [CAS: 191-24-2], indeno (123cd) pyrene [CAS: 193-39-5].
166 €
Read more

Raman spectroscopy - solid samples

Chemical components of a solid sample material are identified using Raman spectroscopy. The analysis is suitable for inorganic and organic samples, excluding metals and alloys.
199–309 €
Read more

High-resolution mass spectrometry (HRMS)

High-resolution mass spectrometry (HRMS) is an analytical technique for determining the exact molecular masses of various compounds. The high accuracy makes HRMS ideal for the identification of molecular structures, ranging from small organic molecules to large biological macromolecules. Sample requirements: Information regarding the solubility of the sample in common high-performance liquid chromatography (HPLC) solvents (e.g., H2O, methanol, acetonitrile) or other solvents should be provided., 0.1% formic acid is used as an additive in the test. It is essential to confirm the sample's stability in this acid., Providing the expected molecular weight of the analyte(s) and molecular structure of the sample as a ChemDraw file is beneficial.. Measurement details: Scans can be performed in both positive (+ve) and negative (-ve) ion modes., An ACQUITY RDa Detector is utilized for detection..
150–270 €
Read more

2D NMR experiments

2D NMR spectroscopy provides more information about the structure of a molecule than one-dimensional NMR and is especially useful in the analysis of larger and more complicated molecules. Some of the most common 2D NMR experiments include COSY, TOCSY, ROESY, NOESY, HMBC, and HSQC. The price includes sample preparation, deuterated solvent (D2O, DMSO-d, or CDCl3), NMR tube, measurement, and basic data processing. The processed NMR spectrum is delivered as an image file. Additional information and raw data can be provided upon request. Please inform our experts if your samples require the use of other than the above-mentioned deuterated solvents or atypical measurement conditions, such as very high temperatures or long measurement times. Prices vary with the chosen experiment, the presented price is the starting price.
394 €
Read more

ICP-MS metal screening of solvent samples

The ICP-MS technique provides information on the concentrations of metals in a sample. The measurement includes the following elements: Na, Mg, K, Ca, Li, Be, B, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, Hf, Hg, Tl, Pb, Bi, U. In the results, the elemental concentrations are expressed in units mg/kg.
345 €
Read more

MicroCT scan (X-ray computed tomography)

Nondestructive 3D analysis of internal structures by X-ray computed tomography. The method visualizes voids, cracks, density, and phase differences within solid structures. The method is most suitable for powdered materials, such as pharmaceutical and cosmetic ingredients. The resolution can go down to 2-3 µm for powders. Please contact us for more information about the analysis options for different materials and material dimensions.
699–1,987 €
Read more

Powder XRD measurement - Qualitative analysis

Qualitative or comparative analysis of crystalline powders using X-ray diffraction (XRD). The analysis is only suitable for materials with at least one crystalline phase.
97–241 €
Read more

Xanthate content analysis

The measurement provides the content of different xanthates using a 1H NMR measurement. In the analysis, appropriate reference is used to quantify the results. Different degradation products can be analyzed simultaneously. Please get in touch with Measurlabs experts to get more details.
200–350 €
Read more

Lignin ash content

NREL/TP -510-42622
Lignin sample ash content measurement at 525°C. The result is expressed as a mass percentage of the ash from the initial sample on a dry matter basis.
99 €
Read more

Nanoparticle analysis according to REACH

The following analyses are included in this nanoparticle analysis package, intended to characterize nanoforms according to the REACH Regulation. Particle size distribution and aspect ratios by SEM-EDX Preparation with isopropanol, Sample dispersion on a slide, with centrifugation, SEM analysis and particle count by image analysis, Nanoparticle detection and classification according to the 2022 EC recommendation on the definition of nanomaterial, Reporting of PSD parameters for ~300 particles, including the following: PSD diagram, accumulated and individual., Feret min (min, d10, d25, d50, d75, d90, d95, max), Feret max (min, d10, d25, d50, d75, d90, d95, max), Equivalent circular diameter (min, d10, d25, d50, d75, d90, d95, max), Aspect ratio (calculated based on individual Feret min and Feret max measurements), Number based nano-fraction (%).. Crystal phase analysis by XRD/Rietveld method Sample preparation: drying, grinding, X-ray preparation, XRD analysis over an angular range extending from 10° to 90°, Identification of the crystalline phases present in the sample, Semi-quantitative analysis of phase distribution, using the Rietveld method, Interpretation of diffractograms. Chemical composition/purity by ICP-AES and CHNS analysis ICP-AES quantification of inorganic and metallic elements: Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sb, Si, Sn, Sr, V, Zn, Ti, and Tl, Determination of C, H, N, and S with an elemental analyzer. Volume-specific surface area (VSSA) and VSSA diameter calculations (optional) BET specific surface area measurement of powder by nitrogen adsorption, True (skeletal) density measurement by He pycnometry, excluding intergranular and intragranular porosity, Both analyses include sample preparation. You can request a quote for the analysis using the form below. Please note that the OECD 125 guideline does not apply to this analysis.
2,200–2,968 €
Read more

Solid state 13C NMR spectroscopy

Solid state carbon-13 (13C) NMR spectroscopy measurement for solid fine powder samples. The price includes an NMR tube, measurement, and basic data processing. Any possible grinding or ball milling needs to be done before delivering samples to Measurlabs. The processed spectrum is delivered as an image file. Additional information and raw data can be provided upon request. Please contact our experts to verify your sample's suitability for the measurement. Also, let us know if you require atypical measurement conditions, such as high temperatures and/or long measurement times.
Read more

Biobased carbon content according to EN 16640

EN 16640
Measurement performed by the EN 16640 standard, using the radiocarbon method to determine the biobased carbon content of a product. The proportion of biobased carbon (also known as biogenic carbon) is expressed in relation to the total carbon content (TC). The displayed price applies to non-volatile samples, but it may be possible to analyze volatile samples upon request. Please note that we cannot accept samples that contain artificial carbon-12, carbon-13, or carbon-14 isotopes because they will cause damage to the equipment.
686 €
Read more

Characterization of polymers by py-GC-MS

Pyrolysis gas chromatography-mass spectrometry (py-GC-MS) analysis to determine the identity of an unknown polymer sample. During the measurement, the sample is instantaneously heated in an inert atmosphere or vacuum. This causes the sample to decompose into smaller molecular fragments which are then analyzed with GC-MS. Different types of polymers can be identified by their unique decomposition products. This includes, but is not limited to: PE, PP, PS, ABS, PMMA, PET, PC, PVC, polyamides, natural & synthetic rubbers, and more. The price includes the basic preparation and analysis of the sample. More extensive sample preparation is subject to additional costs.
542 €
Read more

Perfluoroalkyl compounds (PFAS) in solid and liquid chemicals

Determination of perfluoroalkyl compounds (PFAS) using the LC-MS technique. We offer several analysis packages that include selected PFAS compounds, and the methods can be applied to many different kinds of chemicals. The list of compounds and the reporting limits can vary depending on the sample matrix, and the suitability of the method has to be verified in advance with Measurlabs. Please contact us through the form below for more details and a quote.
Read more

Magnetometry with a vibrating-sample magnetometer

Magnetometry provides information on the magnetic properties of the sample material as a function of the magnetic field. A vibrating-sample magnetometer (VSM), also referred to as a Foner magnetometer, is used in the measurement. According to Faraday’s Law of Induction, a changing magnetic field will produce an electric field, which can be measured to obtain information about the magnetic field. Magnetometry is suitable for thin films, bulk materials, liquids, and powders. Some of the properties that VSM can measure include magnetic moment, coercivity, and hysteresis loops. Low-temperature VSM can also be used to confirm the Meissner effect in superconducting thin films, including those developed for quantum computing applications. Projects are priced on a case-by-case basis, with lower per-sample prices for large sample sets. Please contact us for a quote.
182–2,160 €
Read more

Particle size distribution with TEM

Particle size distribution (PSD) is determined from transmission electron microscopy (TEM) images. The method is most suitable for small particles of 50 nm or smaller. Depending on particle shapes, the method includes calculating the diameters or lengths and widths of particles. In addition to size, TEM provides qualitative information about the surface morphology of the particles. TEM is a good option for irregularly shaped and non-spherical particles such as fibers, rods, and crystals that cannot be characterized meaningfully with traditional methods, including laser diffraction (LD) and dynamic light scattering (DLS). As a result of the analysis, TEM images and the determined particle size distribution for diameter (or length and width) are delivered. Dry samples are suitable for TEM as is. If the particles are wet or dispersed in a solvent, the sample may be dried with a suitable sample preparation method before imaging.
1,551–2,111 €
Read more

Purity assay of solvent samples (GC-FID and Karl Fischer)

Solvent purity assay with GC-FID and Karl Fischer techniques. Determination is performed by analyzing the sample with GC-FID and comparing the area of the solvent signal to the combined area of all peaks. The concentration of the solvent in the sample is expressed as a percentage (%). Karl Fischer titration is used to determine the amount of water in the sample.
489 €
Read more

RBS measurement

Rutherford Backscattering Spectrometry (RBS) can be used to measure the composition of solid samples quantitatively at the surface as well as depth profiling. RBS is used for the analysis of heavy elements and can be combined with ToF-ERDA when lighter elements also need to be analyzed. Elements with similar mass can be difficult to differentiate.
499–569 €
Read more

Volatile organic compound (VOC) content of biogas

With this analysis, the volatile organic compounds (VOC) present in a biogas sample can be quantified. Typically, the boiling range of the detected VOCs is 60-280 °C. Samples are collected using a pump and an adsorbent tube. The analysis uses GC methods and external standard materials to identify and quantify the compounds. Samples to be delivered in gas sampling bags (2 liters in volume). The cylinder gas samples will include additional logistics fees.
410–650 €
Read more

Volatile organic compounds (VOC) in water

EPA 624, EPA 8015, EPA 8260, …
Determination of volatile organic compounds (VOC) in water using the GC-MS technique. The analysis determines the concentrations of 67 volatile compounds including BTEX, DIPE, ETBE, MTBE, TAEE, TAME, and TBA. The results of the analysis are reported in µg/l.
95 €
Read more

Hot-stage microscopy (HSM)

Hot-stage microscopy (HSM) analysis enables the direct visualization of materials under controlled temperature conditions. Capabilities include: Examining compound morphology and particle characteristics., Observing solid-solid transformations, melting/liquefaction, solidification, sublimation, and evaporation., Monitoring how different compounds interact, dissolve, or react with each other., Tracking crystal growth and growth rates., Utilizing the Kofler mixed fusion method for salt/co-crystal screening., Observing oxidation and other chemical reactions as they occur under heat.. The results will include microscope pictures and video showing the transitions during heating. Measurement specifications: Temperature range: 25 °C to 375 °C, Humidity control: 5–90% RH. Instrument details: The instrument set-up comprises a heating stage (hot stage) with a sample holder, coupled with a polarized-light microscope and a system that allows temperature measurements and video/picture recording.
510–750 €
Read more

Lignin hydroxyl group content by 31P NMR spectroscopy

Determination of hydroxyl group (-OH) content in lignin samples by 31P NMR. The method is suitable for lignin that has or might have free hydroxyl groups. The lignin is dissolved in a deuterated solvent (typically CDCl3:Pyridine), and an internal standard is added to the sample. Then, the hydroxyl groups in the sample + internal standard are phosphorylated, and the mixture is analyzed using 31P NMR. The number of free hydroxyl groups can be determined from the NMR spectra by comparing the phosphorus signal of the internal standard to the phosphorus signals of the phosphorylated sample material. The following OH-groups can be quantified (in mmol/g): Aliphatic OH, Phenolic OH, Carboxylic acid , Syringyl OH, Guaiacyl OH, Catechols, p-hydroxyphenyl OH, Total OH. The price can depend on whether your samples require specialized deuterated solvents or preparation conditions (i.e. high temperature or long dissolution time).
450 €
Read more

Polycyclic aromatic hydrocarbons (PAH) in water

ČSN 75 7554
Chromatographic analysis of 16 PAH compounds, listed as high-priority pollutants by US EPA. The analyzed PAH compounds are: Naphthalene (CAS: 91-20-3), Acenaphthylene (CAS: 208-96-8), Acenaphthene (CAS: 83-32-9), Fluorene (CAS: 86-73-7), Phenanthrene (CAS: 85-01-8), Anthracene (CAS: 120-12-7), Fluoranthene (CAS: 206-44-0), Pyrene (CAS: 129-00-0), Benzo[a]anthracene (CAS: 56-55-3), Chrysene (CAS: 218-01-9), Benzo[b]fluoranthene (CAS: 205-99-2), Benzo[k]fluoranthene (CAS: 207-08-9), Benzo[a]pyrene (CAS: 50-32-8), Benzo[ghi]perylene (CAS: 191-24-2), Indeno[1,2,3-c,d]pyrene (CAS: 193-39-5), Dibenz[a,h]anthracene (CAS: 53-70-3). The test is accredited for water samples. Please confirm suitability for other liquids from our method expert.
322 €
Read more

Raman spectroscopy - liquid samples

Raman spectroscopy is a non-destructive chemical analysis technique used for the identification of chemical components in a sample. This analysis is suitable for inorganic and organic liquid samples.
199–309 €
Read more

TOP assay (PFAS precursors)

Total oxidizable precursors (TOP) assay analysis can be used when estimating the presence of PFAS precursors and intermediates by oxidizing them into stable end-products. The analysis can be combined with traditional PFAS analysis methods to obtain additional information. The analysis is suitable for different matrices, for example, water and fire-fighting foams. Contact the method expert for more information.
250–450 €
Read more

Brominated fire retardants (BFRs) in construction materials

Analysis to screen a material for the presence of brominated fire retardants (BFRs), including polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs). The test is performed with a pyrolysis gas-chromatography mass spectrometer (py-GC-MS) according to the ISO 7270-1 standard. The sample is pyrolyzed, which is followed by separation and identification with GC-MS. The obtained pyrogram is then compared to a blank sample that does not contain any brominated fire retardants. We also offer the analysis for electrotechnical products as per IEC 62321-6. Please ask our experts for more information about this option.
285 €
Read more

Chemisorption

Volumetric (static) or dynamic (pulse) chemisorption analysis by CO or H2. The method is mainly used to determine catalyst activity and active sites. When coupled with TPX (temperature programmed experiments, TPO, TPR, TPD), this method can give information about adsorbed species and surface species. Chemisorption can also be conducted with other reactive gases, please contact us for more information.
349–1,890 €
Read more

Hydrogen Fluoride (HF) in gas

Determination of the amount of hydrogen fluoride (HF) in a gas sample. Testing is performed by pumping the gas through a gas trap, after which the content of the trap is analyzed. The required pump and gas trap will be delivered to the customer before sampling. The customer performs the sampling and returns the equipment, upon which the analysis is performed. The detection limit depends on the volume of the sampled gas. Please see the details below.
499 €
Read more

Identification of an unknown sample

Measurlabs offers tailor-made analysis packages for unidentified samples. Our experts will formulate the needed analysis package based on the information provided by the customer. The formulated package aims to provide sufficient information to identify the sample components and their quantities. Most typically, the following methods are used to analyze unknown substances: CHNOS elemental analysis and TGA: These methods will provide information on the sample composition, mainly if the sample is organic or inorganic and if it has one or more constituents. XRD, XRF, ICP, and IC: These methods will be used to provide more detailed qualitative and quantitative information on the inorganic constituents of the sample. 1H & 13C NMR, and GC/HPLC-MS: These methods are used to identify and quantify organic constituents. Our whole analysis catalog can be used to analyze the sample if required. Please contact our experts to start building the unknown sample analysis package designed specifically for your needs. Please also note that the stated required sample amount is the preferred amount. Analysis of smaller sample quantities can also be conducted.
Read more

Polymer characterization by NMR

NMR can be used to identify the type(s) of polymer(s) in a sample by studying the unique response of their nuclei to an applied magnetic field. This technique can be used to characterize a completely unknown polymer or a blend of polymers. NMR can also be used to study the purity or contamination of a polymer sample. During polymer synthesis, compounding, or manufacturing, materials can become mixed with unwanted polymers or other organic contaminants. NMR can identify these molecules and quantify their concentration in the sample relative to the intended polymer composition. The results of the analysis include a processed spectrum, which is delivered as an image file. Additional interpretation and raw data can be provided upon request. 1H-NMR and/or 13C-NMR can be used for this analysis, depending on the sample. Solid-state measurements are also available. The price can depend on whether your samples require the use of specialized deuterated solvents or measurement conditions (i.e., high temperatures or long measurement times). Please contact Measurlabs' NMR experts for a testing plan and quote tailored to your material and analysis needs.
Read more

Respirable crystalline silica (quartz) content of materials

Analysis for determining the content of respirable quartz and other forms of respirable crystalline silica in products and materials. The results can be used for labeling purposes and to facilitate the development of safer products. Crystalline silica/quartz is a common ingredient in building products and other materials containing or composed of stone, gravel, clay, or sand. Exposure to respirable silica for extended periods or high exposure for short periods causes silicosis and may lead to the development of lung cancer. This is why a binding limit value has been set for workplace exposure to respirable crystalline silica in EU countries. Ensuring that materials have a low quartz content is the most effective and cost-efficient way to prevent respirable quartz exposure. In EU countries, materials containing crystalline silica and other category 1 carcinogens are subject to a classification obligation, unless carcinogens are present in quantities below 0.1 % (w/w). Consequently, such products should include the warning “May cause lung cancer by inhalation” and “Causes damage to lungs”. The obligation applies to chemically modified mineral products that contain quartz. Additionally, industrial mineral producers (IMA) in the EU have decided that even non-modified mineral products should be classified based on their crystalline silica content (fine fraction), provided the content exceeds 1.0 wt.%. Please contact the expert team through the form below for more details on the analysis.
1,127 €
Read more

Single crystal XRD

Single crystal X-ray diffraction (SC-XRD) can be used to obtain highly detailed information on the crystal structure of the samples, such as the arrangement of atoms, bond lengths, angles, and symmetry of the crystal lattice. The method is suitable for a variety of different materials such as metals, ceramics, organic materials, and metallo-organic complexes. The analysis can be performed on crystalline samples with a minimum crystallite size of 0.1 mm. Before analysis, we will check the sample under a microscope for a suitable crystal. Please mention which elements the sample contains and the expected crystal structure of the sample.
Read more

AES measurement

Auger Electron Spectroscopy (AES) is a surface-sensitive technique (3-9 nm) used for compositional analysis and depth profiling, providing data on the elemental composition in depth. Secondary electron images can also be provided. AES is a very useful technique to measure patterns since it has a beam size that can go down to a few nm.
438–960 €
Read more

Biobased carbon content according to ISO 16620

ISO 16620
The biobased carbon content is either reported as a fraction of the total organic carbon (TOC) or total carbon (TC). The price is for non-volatile samples. If your sample is volatile, please discuss the suitability of your sample type with our experts. Please also note that we cannot accept samples that contain artificial carbon-12, carbon-13, or carbon-14 isotopes because they will cause damage to the equipment.
686 €
Read more

Identification of chemical groups with FTIR (aqueous solution samples)

Identification of chemical groups in aqueous solutions using Fourier-transform infrared spectroscopy (FTIR). Results will be delivered as raw data and spectra. A batch includes the analysis of 1–3 samples.
352 €
Read more

Raman spectroscopy - gas samples

Analysis of gaseous samples using Raman spectroscopy.
541–797 €
Read more

Short chain branching of HDPE by 13C-NMR

Use of 13C-NMR to identify the type and relative quantity of short-chain branching in high-density polyethylene (HDPE) samples. The prevalence of short-chain branching can have major effects on the properties of HDPE materials such as their crystallinity, melting point, density, and mechanical properties. The branching density and relative distribution of different length side chains can be determined by NMR using the Randall method. The processed spectrum is delivered as an image file. Additional interpretation and raw data can be provided upon request. Please contact Measurlabs' NMR experts to receive a testing plan tailored to your material and analysis needs. This analysis is only relevant to HDPE materials.
241 €
Read more

Tacticity of polymers by NMR

Polymer tacticity (isotactic, syndiotactic, or atactic) can be studied using differing NMR techniques suitable for different polymer types. Polypropylene (PP) is analyzed using 1H-NMR and can be combined with 2D experiments such as COSY-NMR for more precise results. Poly(methyl methacrylate) (PMMA) is analyzed using 13C-NMR and can be combined with 2D experiments such as HMQC-NMR or HSQC-NMR for more precise results. The processed spectra are delivered as an image file. Additional interpretation and raw data can be provided upon request. Please contact Measurlabs' NMR experts to receive a testing plan tailored to your material and analysis needs. Different NMR techniques may need to be used for these analyses based on the sample type and matrix. The price of the measurement can depend on whether your samples require the use of specialized deuterated solvents or measurement conditions (i.e. high temperatures or long measurement times).
Read more

Type of testing

Industry or material

Ask for an offer

Fill in the form, and we'll reply in one business day.

Answering the following questions helps us prepare an offer for you faster:

  • How many samples do you have and what is the sample material?
  • Do you have a recurring need for these tests? If yes, how often and for how many samples at a time?

Have questions or need help? Email us at or call our sales team.


...and more than 700 other happy clients