SEM imaging
Imaging of the sample using scanning electron microscopy (SEM).
Typically, several images are taken with varying magnifications to get a good overview of the sample.
Non-conductive samples can be prepared with a metallic coating to allow imaging.
For cross-section measurement, additional preparation might be needed: FIB, BIB or freeze fracturing.
If compositional analysis is also needed, please see the SEM-EDX measurement.
- Suitable sample matrices
- Dry, solid material, powder, thin film or coating
- Required sample quantity
- 1x1 cm or 1 g
- Typical turnaround time
- 2 – 3 weeks after receiving the samples
- Detection limit
- 10 nm
- Available quality systems
- Measurlabs validated method
- Method expert
Price
Typical price range (Excl. VAT):
107–609 €per sample
We also charge a 97 € service fee per order.
Large batches of samples are eligible for discounts.
Questions? We're happy to help.
Questions? We're happy to help.
Business hours: Mon–Fri 9 AM – 5 PM Finnish time (EST/EEST)
Other tests we offer
SEM-EDX imaging
Imaging of the sample using a scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDX or EDS). Typically, several images are taken with varying magnifications to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). Non-conductive samples can be prepared with a metallic coating. For cross-section measurement, additional preparation might be needed: FIB, BIB, or freeze fracturing.
157–609 €
Read moreTEM imaging
Imaging of the sample with transmission electron microscope (TEM). Typically, several images with varying magnifications are taken to get a good overview of the sample. TEM allows nm-resolution images. Solid samples often require FIB preparation before analysis. HR-TEM can also be provided. Contact us for more details.
532–1,410 €
Read moreTEM-EDX imaging
Imaging of the sample with transmission electron microscopy (TEM) and determination of the elemental composition of the sample using electron dispersive X-ray spectroscopy (EDX or EDS). Several images with varying magnifications are taken to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). For solid samples, the analysis often requires FIB preparation, which is priced separately. HR-TEM can also be provided. Contact us for more details about the analysis options.
607–1,477 €
Read moreAES measurement
Auger Electron Spectroscopy (AES) is a surface-sensitive technique (3-9 nm) used for compositional analysis and depth profiling, providing data on the elemental composition in depth. Secondary electron images can also be provided. AES is a very useful technique to measure patterns since it has a beam size that can go down to a few nm.
438–960 €
Read morePowder XRD measurement - Qualitative analysis
Qualitative or comparative analysis of crystalline powders using X-ray diffraction (XRD). The analysis is only suitable for materials with at least one crystalline phase.
97–241 €
Read morePhthalates analysis package (REACH)
Phthalates are a group of chemicals widely used as plasticizers, which make plastics more flexible and durable. They have also been used as additives in products such as cosmetics and personal care items. Several phthalates have been identified as endocrine-disrupting agents or as chemicals toxic to reproduction. Exposure to phthalates can occur through: Oral exposure Food: Exposure occurs via migration from food packaging., Children's toys: Children often put toys in their mouths.., Inhalation: Breathing in dust from vinyl flooring or fragrances (like perfumes) can cause exposure to phthalates via inhalation., Skin contact: Phthalates present in cosmetics, lotions, and soaps can be absorbed through the skin.. For other listed matrices apart from cosmetics, the analysis package covers the following substances included in the REACH Authorization List: Substance Abbreviation CAS number Diisobutyl phthalate DIBP 84-69-5 Dibutyl phthalate DBP 84-74-2 Benzyl butyl phthalate BBP 85-68-7 Bis(2-ethylhexyl) phthalate DEHP 117-81-7 Di(n-octyl) phthalate DNOP 117-84-0 Diisononyl phthalate DINP 68515-48-0 Diisodecyl phthalate DIDP 26761-40-0 Products that contain restricted phthalates in concentrations higher than 0.1% may be removed from the market. The analysis package for cosmetic products contains the following phthalates: Substance Abbreviation CAS number Bis(2-ethylhexyl) phthalate DEHP 117-81-7 Benzyl butyl phthalate BBP 85-68-7 Dibutyl phthalate DBP 84-74-2 Diisononyl phthalate DINP 68515-48-0 Di(n-octyl) phthalate DNOP 117-84-0 Diisodecyl phthalate DIDP 26761-40-0 All the above-mentioned substances are prohibited in cosmetic products (Annex II of Regulation (EC) No 1223/2009).
241 €
Read moreX-ray photoelectron spectroscopy (XPS)
XPS is a semi-quantitative technique used to measure the elemental composition of material surfaces. In addition, it can also determine the binding state of the atoms. XPS is a surface-sensitive technique. Typical probing depth is 3-9 nm, and detection limits range roughly between 0.1 and 1 atomic %. XPS can measure elements from Li to U. The elemental composition is reported in at.% and measured on 1 area of a few 100 µm. Upon request, we can measure smaller areas or depth profiles, and a binding state determination can also be provided. Measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000. Synchrotron XPS is also available. Contact us for more information and a quote for your project.
438–960 €
Read moreMicroCT scan (X-ray computed tomography)
Nondestructive 3D analysis of internal structures by X-ray computed tomography. The method visualizes voids, cracks, density, and phase differences within solid structures. The method is most suitable for powdered materials, such as pharmaceutical and cosmetic ingredients. The resolution can go down to 2-3 µm for powders. Please contact us for more information about the analysis options for different materials and material dimensions.
699–1,987 €
Read moreParticle size distribution with TEM
Particle size distribution (PSD) is determined from transmission electron microscopy (TEM) images. The method is most suitable for small particles of 50 nm or smaller. Depending on particle shapes, the method includes calculating the diameters or lengths and widths of particles. In addition to size, TEM provides qualitative information about the surface morphology of the particles. TEM is a good option for irregularly shaped and non-spherical particles such as fibers, rods, and crystals that cannot be characterized meaningfully with traditional methods, including laser diffraction (LD) and dynamic light scattering (DLS). As a result of the analysis, TEM images and the determined particle size distribution for diameter (or length and width) are delivered. Dry samples are suitable for TEM as is. If the particles are wet or dispersed in a solvent, the sample may be dried with a suitable sample preparation method before imaging.
1,551–2,111 €
Read moreHot-stage microscopy (HSM)
Hot-stage microscopy (HSM) analysis enables the direct visualization of materials under controlled temperature conditions. Capabilities include: Examining compound morphology and particle characteristics., Observing solid-solid transformations, melting/liquefaction, solidification, sublimation, and evaporation., Monitoring how different compounds interact, dissolve, or react with each other., Tracking crystal growth and growth rates., Utilizing the Kofler mixed fusion method for salt/co-crystal screening., Observing oxidation and other chemical reactions as they occur under heat.. The results will include microscope pictures and video showing the transitions during heating. Measurement specifications: Temperature range: 25 °C to 375 °C, Humidity control: 5–90% RH. Instrument details: The instrument set-up comprises a heating stage (hot stage) with a sample holder, coupled with a polarized-light microscope and a system that allows temperature measurements and video/picture recording.
510–750 €
Read more”The team is very experienced and can help even with the most challenging testing services.”
Sanna Liimatainen, Founder & Designer, Finishfire
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.