AES measurement
Auger Electron Spectroscopy (AES) is a surface-sensitive technique (3-9 nm) used for compositional analysis and depth profiling, providing data on the elemental composition in depth. Secondary electron images can also be provided.
AES is a very useful technique to measure patterns since it has a beam size that can go down to a few nm.
More information about the method:
Auger electron spectroscopy (AES)- Suitable sample matrices
- Solid, dry, and conductive materials
- Required sample quantity
- 1x1 cm
- Typical turnaround time
- 2 – 3 weeks after receiving the samples
- Detection limit
- 0.1 - 1 at.%
- Available quality systems
- Measurlabs validated method
- Device types
- Method expert
Price
Typical price range (Excl. VAT):
438–960 €per sample
We also charge a 97 € service fee per order.
Large batches of samples are eligible for discounts.
Questions? We're happy to help.
Questions? We're happy to help.
Business hours: Mon–Fri 9 AM – 5 PM Finnish time (EST/EEST)
Other tests we offer
X-ray photoelectron spectroscopy (XPS)
XPS is a semi-quantitative technique used to measure the elemental composition of material surfaces. In addition, it can also determine the binding state of the atoms. XPS is a surface-sensitive technique. Typical probing depth is 3-9 nm, and detection limits range roughly between 0.1 and 1 atomic %. XPS can measure elements from Li to U. The elemental composition is reported in at.% and measured on 1 area of a few 100 µm. Upon request, we can measure smaller areas or depth profiles, and a binding state determination can also be provided. Measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000. Synchrotron XPS is also available. Contact us for more information and a quote for your project.
438–960 €
Read moreSEM imaging
Imaging of the sample using scanning electron microscopy (SEM). Typically, several images are taken with varying magnifications to get a good overview of the sample. Non-conductive samples can be prepared with a metallic coating to allow imaging. For cross-section measurement, additional preparation might be needed: FIB, BIB or freeze fracturing. If compositional analysis is also needed, please see the SEM-EDX measurement.
107–609 €
Read moreX-ray photoelectron spectroscopy (XPS) depth profiling
In XPS depth profiling, ion gun etching cycles and XPS analysis cycles are alternated to obtain semi-quantitative information on the elemental composition (at.%) of the sample as a function of depth. The binding states of atoms can also be analyzed as a function of depth to determine the chemistry of the sample and its variations with depth. XPS depth profiling is a destructive technique with an analysis area diameter ranging from 10 µm to several 100 µm. Sputtering is done with an Ar-cluster GCIB ion beam or Ar monoatomic ions, and XPS measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000.
840–1,538 €
Read moreMetal screening by ICP-SFMS (semi-quantitative)
This metal screening analysis includes the semi-quantitative determination of 70 elements. The method can be used, for example, to determine the background concentrations of metals in environmental samples or to study the elemental distribution of unknown samples. Screening is also often performed to assess which metals should be analyzed by a quantitative method. The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. A semi-quantitative determination of the following elements is included: Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr. However, please note that some elements may not be determinable due to matrix interference. During this semi-quantitative analysis, the instrument is calibrated for about 30 elements and the rest of the analytes are quantified using sensitivity factors for calibrated elements with similar mass and first ionization potential considering isotope abundances. Quantitative analysis is also available at an additional price. During this analysis, all elements are calibrated (excluding halogens and Os). Please ask for an offer for this service.
753 €
Read moreXRR of thin films or coatings
X-Ray Reflectometry (XRR) analysis is used to measure the density (g/cm3), thickness (nm), and roughness (nm) of thin films. The method is applicable to the characterization of single- or multilayered thin films, as it provides information on the thickness and density of individual layers of the sample material as well as the roughness of the interphases. Greatest accuracy for XRR thickness measurements is generally achieved for samples containing 1-150 nm thick surface layers with under 5 nm RMS roughness. Thicker films and coatings with rougher surfaces can also be characterized, but the accuracy of thickness determination decreases as the thickness and roughness of the film or film stack increase. >150 mm wafers are typically cut to fit the sample holder. Please let us know if you need testing for larger wafers that cannot be cut into pieces. The available temperature range for XRR measurements is 25-1100 °C, and crystallinity can be studied as a function of temperature. The measurements can be performed under a normal atmosphere, inert gas, or vacuum. Measurements are typically performed using one of the following instruments: Rigaku SmartLab, Panalytical X'Pert Pro MRD, Bruker D8 Discover. Please let us know if you have a preference for a specific instrument.
183–271 €
Read moreRBS measurement
Rutherford Backscattering Spectrometry (RBS) can be used to measure the composition of solid samples quantitatively at the surface as well as depth profiling. RBS is used for the analysis of heavy elements and can be combined with ToF-ERDA when lighter elements also need to be analyzed. Elements with similar mass can be difficult to differentiate.
499–569 €
Read moreCHNOS analysis of organic materials
Determination of carbon, hydrogen, nitrogen, sulfur, and oxygen content of an organic sample. CHNS analysis (”LECO analysis”) is performed using a flash combustion method, where the sample is combusted under 25 kPa of O2 at an elevated temperature (1000 °C), followed by gas chromatography separation and detection using a thermal conductivity detector. Oxygen is analyzed by reduction on granulated carbon at 1480 °C, utilizing high-temperature thermal decomposition and conversion of oxygen into carbon monoxide before gas chromatography separation and detection with a thermal conductivity detector. The sample can be either solid or liquid, but water in the sample affects the results. In the case of aqueous samples, it is possible to dry the sample before analysis. The price includes two parallel measurements. The results are reported as wt-% of the initial sample. The ash, drying and dry loss measurements will increase the minimum required sample material need to 300 mg. The analysis gives the total carbon, hydrogen, nitrogen, sulfur, and oxygen content of the material, but it does not identify any chemical structures. The measurement can be combined with other methods, such as GC-MS, 1H, and 13C NMR, to perform substance structure identification. Possible element packages: O, CHNS, and CHNOS.
119–415 €
Read morePolycyclic aromatic hydrocarbon (PAH) analysis of solid samples
GC-MS analysis of 16 PAH compounds, which are listed as high-priority pollutants by the U.S. Environmental Protection Agency (EPA). The analyzed PAH compounds are: naphthalene [CAS: 91-20-3], acenaphthylene [CAS: 208-96-8], acenaphthene [CAS: 83-32-9], fluorene [CAS: 86-73-7], phenanthrene [CAS: 85-01-8], anthracene [CAS: 120-12-7], fluoranthene [CAS: 206-44-0], pyrene [CAS: 129-00-0], benz(a)anthracene [CAS: 56-55-3], chrysene [CAS: 218-01-9], benzo(b)fluoranthene [CAS: 205-99-2], benzo(k)fluoranthene [CAS: 207-08-9], benzo (a) pyrene [CAS: 50-32-8], dibenzo(ah)anthracene [CAS: 53-70-3], benzo (ghi) perylene [CAS: 191-24-2], indeno (123cd) pyrene [CAS: 193-39-5].
166 €
Read moreTEM-EDX imaging
Imaging of the sample with transmission electron microscopy (TEM) and determination of the elemental composition of the sample using electron dispersive X-ray spectroscopy (EDX or EDS). Several images with varying magnifications are taken to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). For solid samples, the analysis often requires FIB preparation, which is priced separately. HR-TEM can also be provided. Contact us for more details about the analysis options.
607–1,477 €
Read moreTEM imaging
Imaging of the sample with transmission electron microscope (TEM). Typically, several images with varying magnifications are taken to get a good overview of the sample. TEM allows nm-resolution images. Solid samples often require FIB preparation before analysis. HR-TEM can also be provided. Contact us for more details.
532–1,410 €
Read more”The team is very experienced and can help even with the most challenging testing services.”
Sanna Liimatainen, Founder & Designer, Finishfire
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.