Powder XRD measurement - Qualitative analysis
Qualitative or comparative analysis of crystalline powders using X-ray diffraction (XRD).
The analysis is only suitable for materials with at least one crystalline phase.
More information about the method:
X-ray diffraction (XRD)- Suitable sample matrices
- Powdered samples and materials that can be ground to a fine powder. For example, sand, rocks, dirt, carbonized lignin, active pharmaceutical ingredients, etc.
- Required sample quantity
- 15 g
- Typical turnaround time
- 2 weeks after receiving the samples
- Available quality systems
- Measurlabs validated method
- Device types
- Method expert
Price
Typical price range (Excl. VAT):
97–241 €per sample
We also charge a 97 € service fee per order.
Large batches of samples are eligible for discounts.
Questions? We're happy to help.
Questions? We're happy to help.
Business hours: Mon–Fri 9 AM – 5 PM Finnish time (EST/EEST)
Other tests we offer
Powder XRD measurement - Quantitative analysis
Phase identification and quantification (Rietveld analysis) of a crystalline powder material using X-ray diffraction (XRD). The analysis can also provide unit cell dimensions. The analysis is only suitable for materials with at least one crystalline phase. The quantification accuracy is roughly 0.1 %, depending on the sample matrix and the phase in question. The available temperature range for XRD measurements is 25-1100 °C and the crystallinity can be studied as a function of temperatures. The measurements can be done under a normal atmosphere, inert gas, or vacuum. Please contact our experts to discuss the available temperature and atmosphere combinations. Please mention which crystalline phases your material contains and which ones are you interested in quantifying when requesting testing. However, the method can be applied to unknown phases as well. Either a tabletop or a synchrotron XRD can be used to perform the measurements.
189–569 €
Read moreSEM imaging
Imaging of the sample using scanning electron microscopy (SEM). Typically, several images are taken with varying magnifications to get a good overview of the sample. Non-conductive samples can be prepared with a metallic coating to allow imaging. For cross-section measurement, additional preparation might be needed: FIB, BIB or freeze fracturing. If compositional analysis is also needed, please see the SEM-EDX measurement.
107–609 €
Read moreTEM imaging
Imaging of the sample with transmission electron microscope (TEM). Typically, several images with varying magnifications are taken to get a good overview of the sample. TEM allows nm-resolution images. Solid samples often require FIB preparation before analysis. HR-TEM can also be provided. Contact us for more details.
532–1,410 €
Read moreSEM-EDX imaging
Imaging of the sample using a scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDX or EDS). Typically, several images are taken with varying magnifications to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). Non-conductive samples can be prepared with a metallic coating. For cross-section measurement, additional preparation might be needed: FIB, BIB, or freeze fracturing.
157–609 €
Read moreMetal screening by ICP-SFMS (semi-quantitative)
This metal screening analysis includes the semi-quantitative determination of 70 elements. The method can be used, for example, to determine the background concentrations of metals in environmental samples or to study the elemental distribution of unknown samples. Screening is also often performed to assess which metals should be analyzed by a quantitative method. The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. A semi-quantitative determination of the following elements is included: Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr. However, please note that some elements may not be determinable due to matrix interference. During this semi-quantitative analysis, the instrument is calibrated for about 30 elements and the rest of the analytes are quantified using sensitivity factors for calibrated elements with similar mass and first ionization potential considering isotope abundances. Quantitative analysis is also available at an additional price. During this analysis, all elements are calibrated (excluding halogens and Os). Please ask for an offer for this service.
753 €
Read moreNanoparticle analysis according to REACH
The following analyses are included in this nanoparticle analysis package, intended to characterize nanoforms according to the REACH Regulation. Particle size distribution and aspect ratios by SEM-EDX Preparation with isopropanol, Sample dispersion on a slide, with centrifugation, SEM analysis and particle count by image analysis, Nanoparticle detection and classification according to the 2022 EC recommendation on the definition of nanomaterial, Reporting of PSD parameters for ~300 particles, including the following: PSD diagram, accumulated and individual., Feret min (min, d10, d25, d50, d75, d90, d95, max), Feret max (min, d10, d25, d50, d75, d90, d95, max), Equivalent circular diameter (min, d10, d25, d50, d75, d90, d95, max), Aspect ratio (calculated based on individual Feret min and Feret max measurements), Number based nano-fraction (%).. Crystal phase analysis by XRD/Rietveld method Sample preparation: drying, grinding, X-ray preparation, XRD analysis over an angular range extending from 10° to 90°, Identification of the crystalline phases present in the sample, Semi-quantitative analysis of phase distribution, using the Rietveld method, Interpretation of diffractograms. Chemical composition/purity by ICP-AES and CHNS analysis ICP-AES quantification of inorganic and metallic elements: Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sb, Si, Sn, Sr, V, Zn, Ti, and Tl, Determination of C, H, N, and S with an elemental analyzer. Volume-specific surface area (VSSA) and VSSA diameter calculations (optional) BET specific surface area measurement of powder by nitrogen adsorption, True (skeletal) density measurement by He pycnometry, excluding intergranular and intragranular porosity, Both analyses include sample preparation. You can request a quote for the analysis using the form below. Please note that the OECD 125 guideline does not apply to this analysis.
2,200–2,968 €
Read morePolycyclic aromatic hydrocarbon (PAH) analysis of solid samples
GC-MS analysis of 16 PAH compounds, which are listed as high-priority pollutants by the U.S. Environmental Protection Agency (EPA). The analyzed PAH compounds are: naphthalene [CAS: 91-20-3], acenaphthylene [CAS: 208-96-8], acenaphthene [CAS: 83-32-9], fluorene [CAS: 86-73-7], phenanthrene [CAS: 85-01-8], anthracene [CAS: 120-12-7], fluoranthene [CAS: 206-44-0], pyrene [CAS: 129-00-0], benz(a)anthracene [CAS: 56-55-3], chrysene [CAS: 218-01-9], benzo(b)fluoranthene [CAS: 205-99-2], benzo(k)fluoranthene [CAS: 207-08-9], benzo (a) pyrene [CAS: 50-32-8], dibenzo(ah)anthracene [CAS: 53-70-3], benzo (ghi) perylene [CAS: 191-24-2], indeno (123cd) pyrene [CAS: 193-39-5].
166 €
Read moreTEM-EDX imaging
Imaging of the sample with transmission electron microscopy (TEM) and determination of the elemental composition of the sample using electron dispersive X-ray spectroscopy (EDX or EDS). Several images with varying magnifications are taken to get a good overview of the sample. An EDX mapping, line scan, or point measurement is collected to measure the sample composition (elemental at.% or wt.%). For solid samples, the analysis often requires FIB preparation, which is priced separately. HR-TEM can also be provided. Contact us for more details about the analysis options.
607–1,477 €
Read moreDroplet size analysis for sprays
ISO 13320
Test of 1 bottle at 20 °C with Malvern Spraytec to characterize particle sizes between 0.1 µm and 900 µm with a standard distance between the nozzle and the laser beam. The results are reported for 3 repeat shots. Particle size distribution histograms, percent finers (Dv10, Dv50, Dv90), and % of particles smaller than 5 µm, 10 µm, and 50 µm are reported. Providing two 100% charge spray bottles per analysis is recommended for aerosols. Contact us for a quote and more information on analyses under nonstandard conditions.
490–1,128 €
Read moreParticle size distribution using dynamic light scattering (DLS)
Determination of particle size distribution (PSD) by dynamic light scattering (DLS). Analysis can be done from dispersions or solids that can be dispersed in water or organic solvents. The method is suitable for particle sizes from 0.4 nm to 10 µm.
87–371 €
Read more”The team is very experienced and can help even with the most challenging testing services.”
Sanna Liimatainen, Founder & Designer, Finishfire
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.