X-ray diffraction

X-ray diffraction (XRD) is a method used for studying the structure, composition, and physical properties of materials by analysing their crystal structures. With XRD, it is also possible to identify crystalline materials.

XRD is commonly applied in materials science but it also benefits many fields of industry in product development and improvement of production processes of different materials.

  • Fast turnaround times
  • Personal service from method experts
  • Competitive prices
  • Result accuracy guarantee

X-ray diffraction (XRD) is used for determining the properties of the crystallographic structure (i.e. crystal structure) of crystalline materials. Crystal structure means the order of the particles (atoms, ions or molecules) in a crystalline matter, where they are arranged into regular arrays of repeating unit cells. Sodium chloride (table salt) and diamond are examples of crystalline matter, but all solid materials have some kind of a crystal structure. The components of this structure are usually crystal planes, that is atoms which have settled as planes on top of each other with certain distances. These distances can be measured with XRD. 

Diffraction phenomenon

XRD is based on a phenomenon called diffraction. In diffraction, a regular array of scatterers produces a regular array of spherical waves of radiation when the radiation hits them and is reflected from them. This is called elastic scattering. In almost all directions, the reflected waves cancel each other out, which is called destructive interference. However, in a few specific directions the waves add constructively and therefore amplify each other, which is called constructive interference. These specific directions appear as bright spots called reflections on the formed diffraction pattern. This phenomenon can be represented with Bragg’s law: 2dsinθ = nλ, where d is the distance between diffracting (wave reflecting) planes or objects, θ is the angle of the reflected radiation, n is an integer representing the amount of scatterers, and λ is the wavelength of the radiation used. In conclusion, the diffraction patterns result from waves of electromagnetic radiation reflecting from a regular array of scatterers.

Diffraction in XRD

Diffraction can be applied to the atomic level of different materials, when X-rays are used as the electromagnetic radiation to produce the diffraction pattern. X-rays are a good tool in determining crystal structures because the wavelength (λ) of X-rays is often the same order of magnitude as the distance of the spaces (d) between the crystal planes in the material. In XRD, the X-rays scatter from the atoms in the crystal structure primarily because they interact with the electrons in the atoms. The diffraction pattern produced by the diffracted X-rays is different for every substance because of the unique order of the atoms or molecules in them. The intensities and scattering angles of the X-rays diffracted from the material are measured with an X-ray analyzer. The final result of the measurement is a diffractogram, which is a plot having the X-ray intensity on the y-axis and the angle between the incident and the diffracted X-ray beam on the x-axis. When the angles where the constructive interference happens and the reflections occur are measured and the wavelength of the used X-rays (λ) is known, the distances between the crystal planes or atoms in the material (d) can be calculated using the mathematical formula of Bragg’s law. 

Information obtained from the XRD analysis

Many kinds of information can be obtained from the diffractogram. Because every crystalline matter produces its own kind of diffraction pattern and thus diffractogram, different materials can be identified by comparing the obtained diffractogram with commonly used databases of diffractograms of different materials. It is also possible to determine the individual components and their relative amounts in a material which consists of several different phases or substances. The lattice parameters of particles in a crystalline structure can be determined with XRD, because it is possible to measure the dimensions, shapes and geometries of the particles in the material. Additionally, the crystallite size and strain can be measured with XRD, because the width of the bright spots in the diffraction pattern depends on the crystallite size of the matter and microstrain in the sample. Thus, information about the size and strain of the crystallites can be obtained from the broadening of the peaks in the diffractogram. Single crystals can also be investigated to determine the three-dimensional structure of their molecules with the help of single crystal diffraction (SCD). This analysis requires a single crystal from the sample which can be produced by varying conditions like solvent or evaporation rate.

Non-ambient XRD

X-ray diffraction measurements can be done under ambient or non-ambient conditions. Usually, ambient XRD is used for determining the basic structure of the material. In non-ambient XRD (NA-XRD), the sample is analysed under different conditions which can be created by adjusting environmental parameters such as temperature, pressure, relative humidity, gas environment and mechanical load as well as electrical and magnetic fields. The altering of the parameters in NA-XRD results in changes in the material and its structures, and these changes can be examined at the same time when they happen. For example structural changes during operation, heat treatment, calcination and sintering, as well as hydration and dehydration processes can be studied with this method. NA-XRD can give very important information about the behavior of the material in different situations.


In order for the diffraction to occur, the X-rays have to scatter from a regular array of particles which have a long-range order in the material. This is why the samples used have to be solid crystalline materials, which means that they must have a regular crystal structure. Amorphous materials can also be examined with XRD but only a little amount of information is obtained from them. It is possible to pretreat the samples before analysis by grinding them into powder. This improves the quality of the measurement for example by increasing the diffraction intensity of the X-rays. 

Suitable sample matrices

  • Solid samples
  • Crystalline materials
  • Alloys
  • Ceramics
  • Polymers
  • Minerals
  • Zeolites
  • Catalysts
  • Pharmaceuticals
  • Drug active pharmaceutical ingredients (APIs)
  • Foods

Ideal uses of XRD

  • Material examination, such as analysis of crystal structure or phase and structural changes in variable conditions
  • Industrial research and product development for example in mineralogy, metallurgy, chemical industry and food industry
  • Material identification
  • Quality control
  • Failure and defect analyses, such as internal stress measurements
  • Optimization of production processes

Ask for a quote

You can also email us at info@measurlabs.com or call us at +358 40 735 4843.

We always reply within one business day.

Frequently asked questions

What is XRD commonly used for?

XRD is a non-destructive method used especially in materials science, but also in many fields of industry. The most commonly used application of XRD is the identification of materials based on the diffraction pattern and diffractogram of the reflected X-rays. XRD is also used for determining the crystal structure of the material, and thus information on how the actual structure of the material differs from the ideal one is obtained. The structural properties of the material, such as grain size, lattice parameters, strain, preferred orientation of the particles and phase composition are possible to determine with this method. Because XRD can be applied to examining the internal stresses and defects of the material, it can be a helpful tool in research and product development.

The kind of information obtained with non-ambient XRD (NA-XRD) differs from the information obtained with ambient XRD, because the altering of the parameters in NA-XRD results in changes in the material and its structures. NA-XRD is widely used in research and product development in various fields of industry. Mineralogy, metallurgy, ceramics, chemical industry, pharmacological industry and food industry along with industries working with thin films can benefit from NA-XRD. For example material formation and structural changes of building materials and minerals, heat treatment and annealing of ceramics and polymers, calcination and sintering of catalysts, hydration and dehydration processes of pharmaceuticals and foods as well as changes in refractory materials and alloys during operation can be investigated with this method. Thus, NA-XRD is suitable for examining any kind of structural changes in the sample from simple phase transitions to complex catalytic reactions in different conditions.

Additionally, thin films and coatings can be analysed with grazing incidence X-ray diffraction (GIXRD), which is a version of XRD. With GIXRD, the crystal structure of thin films can be determined and the substances in them can be identified.

What is GIXRD?

Grazing incidence X-ray diffraction (GIXRD) is a modification of XRD having the same operating principle as XRD. With GIXRD, the crystal structure and particle level properties of thin films and coatings can be analysed by adjusting the incident angle of the X-ray beam hitting the sample relative to the critical angle of the reflected X-rays. The phenomenon works in the same way as in X-ray reflectivity (XRR), with which the structural properties of thin films can be determined. When small enough incident angles of the X-ray beam are used, a stronger signal from the surface layer of the material is created, in which case the particle level structure of thin films and coatings can be discovered and the substances in them can be identified. Therefore, GIXRD can be a helpful tool in the product development and quality control of different coatings, for example. More information about GIXRD can be found from our GIXRD page

What are the limitations of XRD?

When an unknown material is wanted to identify properly, the sample should be homogenous or its composition should be consistent. Identification of the material also requires a reference data library. 

Only samples consisting of crystalline material can be examined with XRD. The measurement also works out for amorphous matter, but the amount of information obtained from it remains small. If the sample consists of many different crystalline components, the diffractogram may be too complex to analyze the repeating unit cells or particles of the material. In addition, some samples need to be ground in order to obtain good enough data.

The crystal structure of thin films cannot be determined with the ordinary XRD method. Instead, grazing incidence X-ray diffraction (GIXRD) is needed for this purpose.

What kind of samples can be analyzed with XRD?

In order for the diffraction to occur, the X-rays have to scatter from a regular array of particles which have a long-range order in the material. This is why the sample material has to be solid and preferably crystalline.

With non-ambient XRD (NA-XRD), for example alloys, building materials, ceramics, refractory materials, polymers, minerals, zeolites, catalysts, drug APIs, pharmaceuticals and foods can be examined.

What is Measurlabs?

Measurlabs offers a variety of laboratory analyses for product developers and quality managers. We perform some of the analyses in our own lab, but mostly we outsource them to carefully selected partner laboratories. This way we can send each sample to the lab that is best suited for the purpose, and offer high-quality analyses with more than a thousand different methods to our clients.

How does the service work?

When you contact us through our contact form or by email, one of our specialists will take ownership of your case and answer your query. You get an offer with all the necessary details about the analysis, and can send your samples to the indicated address. We will then take care of sending your samples to the correct laboratories and write a clear report on the results for you.

How do I send my samples?

Samples are usually delivered to our laboratory via courier. Contact us for further details before sending samples.

X-ray diffraction (XRD) is a reliable method, which is able to answer all kinds of questions about the crystal structure of a material. Material identification and examination in changing conditions (non-ambient XRD) are also possible. Effective XRD analysing services are provided by Measur’s wide network of accredited laboratories to support product development and quality control.