Elemental analysis of solid and liquid samples with XRF
XRF is a quantitative and qualitative method that can be used to analyze solid and liquid materials. This method is intended for a standard screening of homogeneous materials that do not require special sample preparation, precautions, or have any other special requirements.
Wavelength-dispersive XRF (WDXRF) is used to perform the measurements unless energy-dispersive XRF (EDXRF) is specifically requested.
More information about the method:
XRF analysis- Suitable sample matrices
- Solids, powders and liquids
- Required sample quantity
- 2 g
- Typical turnaround time
- 1 week after receiving the sample
- Available quality systems
- Measurlabs validated method
- Device types
- Standard
- Method expert
Price
Typical price range (Excl. VAT):
189–299 €per sample
We also charge a 97 € service fee per order.
Large batches of samples are eligible for discounts.
Questions? We're happy to help.
Questions? We're happy to help.
Business hours: Mon–Fri 9 AM – 5 PM Finnish time (EST/EEST)
Other tests we offer
Metal screening by ICP-SFMS (semi-quantitative)
This metal screening analysis includes the semi-quantitative determination of 70 elements. The method can be used, for example, to determine the background concentrations of metals in environmental samples or to study the elemental distribution of unknown samples. Screening is also often performed to assess which metals should be analyzed by a quantitative method. The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. A semi-quantitative determination of the following elements is included: Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr. However, please note that some elements may not be determinable due to matrix interference. During this semi-quantitative analysis, the instrument is calibrated for about 30 elements and the rest of the analytes are quantified using sensitivity factors for calibrated elements with similar mass and first ionization potential considering isotope abundances. Quantitative analysis is also available at an additional price. During this analysis, all elements are calibrated (excluding halogens and Os). Please ask for an offer for this service.
753 €
Read moreTotal organic fluorine (TOF) content in challenging sample materials (chemicals, oils, etc.)
ASTM D7359
Determination of the total organic fluorine (TOF) content in combustible materials by combustion ion chromatography (CIC). TOF analysis gives information about the total amount of organic fluorinated compounds. It can also be used to evaluate the presence of per- and polyfluoroalkyl substances (PFAS) in the material, even though individual PFAS compounds can't be analyzed with this method. The analysis is suitable for many different materials. Please describe the sample in detail when requesting an offer to help us prepare a quote quickly.
350–600 €
Read moreIdentification of chemical groups with FTIR (solid samples)
Qualitative identification of chemical groups in solid samples by Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Results will be delivered as an FTIR spectrum. In addition, a comparison to an FTIR library will be provided. The method is not quantitative, but it can be used to identify the main chemical components of the sample.
170 €
Read moreCHNOS analysis of organic materials
Determination of carbon, hydrogen, nitrogen, sulfur, and oxygen content of an organic sample. CHNS analysis (”LECO analysis”) is performed using a flash combustion method, where the sample is combusted under 25 kPa of O2 at an elevated temperature (1000 °C), followed by gas chromatography separation and detection using a thermal conductivity detector. Oxygen is analyzed by reduction on granulated carbon at 1480 °C, utilizing high-temperature thermal decomposition and conversion of oxygen into carbon monoxide before gas chromatography separation and detection with a thermal conductivity detector. The sample can be either solid or liquid, but water in the sample affects the results. In the case of aqueous samples, it is possible to dry the sample before analysis. The price includes two parallel measurements. The results are reported as wt-% of the initial sample. The ash, drying and dry loss measurements will increase the minimum required sample material need to 300 mg. The analysis gives the total carbon, hydrogen, nitrogen, sulfur, and oxygen content of the material, but it does not identify any chemical structures. The measurement can be combined with other methods, such as GC-MS, 1H, and 13C NMR, to perform substance structure identification. Possible element packages: O, CHNS, and CHNOS.
119–415 €
Read moreTotal fluorine content in plastic
EN 15408
Determination of total fluorine (F) content in plastic according to the EN 15408 mod. method. The fluorine content of the sample is obtained using oxygen bomb combustion treatment followed by ion chromatography (IC). Possible sample preparation, such as grinding into smaller particles, is available at an extra cost. This method can also be used to determine the total content of S, Cl, and Br. The results will be reported in mg/kg.
248 €
Read moreIdentification of an unknown sample
Measurlabs offers tailor-made analysis packages for unidentified samples. Our experts will formulate the needed analysis package based on the information provided by the customer. The formulated package aims to provide sufficient information to identify the sample components and their quantities. Most typically, the following methods are used to analyze unknown substances: CHNOS elemental analysis and TGA: These methods will provide information on the sample composition, mainly if the sample is organic or inorganic and if it has one or more constituents. XRD, XRF, ICP, and IC: These methods will be used to provide more detailed qualitative and quantitative information on the inorganic constituents of the sample. 1H & 13C NMR, and GC/HPLC-MS: These methods are used to identify and quantify organic constituents. Our whole analysis catalog can be used to analyze the sample if required. Please contact our experts to start building the unknown sample analysis package designed specifically for your needs. Please also note that the stated required sample amount is the preferred amount. Analysis of smaller sample quantities can also be conducted.
Read more
Polycyclic aromatic hydrocarbon (PAH) analysis of solid samples
GC-MS analysis of 16 PAH compounds, which are listed as high-priority pollutants by the U.S. Environmental Protection Agency (EPA). The analyzed PAH compounds are: naphthalene [CAS: 91-20-3], acenaphthylene [CAS: 208-96-8], acenaphthene [CAS: 83-32-9], fluorene [CAS: 86-73-7], phenanthrene [CAS: 85-01-8], anthracene [CAS: 120-12-7], fluoranthene [CAS: 206-44-0], pyrene [CAS: 129-00-0], benz(a)anthracene [CAS: 56-55-3], chrysene [CAS: 218-01-9], benzo(b)fluoranthene [CAS: 205-99-2], benzo(k)fluoranthene [CAS: 207-08-9], benzo (a) pyrene [CAS: 50-32-8], dibenzo(ah)anthracene [CAS: 53-70-3], benzo (ghi) perylene [CAS: 191-24-2], indeno (123cd) pyrene [CAS: 193-39-5].
166 €
Read moreElemental analysis of plastics and polymers by ICP-SFMS (selected elements)
The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. The measurement includes only the selected element or elements from the list below: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, and Zr. NOTE: The price is applicable for the first measured element. The price for extra elements from the same sample is 40 €/element.
291 €
Read morePowder XRD measurement - Quantitative analysis
Phase identification and quantification (Rietveld analysis) of a crystalline powder material using X-ray diffraction (XRD). The analysis can also provide unit cell dimensions. The analysis is only suitable for materials with at least one crystalline phase. The quantification accuracy is roughly 0.1 %, depending on the sample matrix and the phase in question. The available temperature range for XRD measurements is 25-1100 °C and the crystallinity can be studied as a function of temperatures. The measurements can be done under a normal atmosphere, inert gas, or vacuum. Please contact our experts to discuss the available temperature and atmosphere combinations. Please mention which crystalline phases your material contains and which ones are you interested in quantifying when requesting testing. However, the method can be applied to unknown phases as well. Either a tabletop or a synchrotron XRD can be used to perform the measurements.
189–569 €
Read moreAES measurement
Auger Electron Spectroscopy (AES) is a surface-sensitive technique (3-9 nm) used for compositional analysis and depth profiling, providing data on the elemental composition in depth. Secondary electron images can also be provided. AES is a very useful technique to measure patterns since it has a beam size that can go down to a few nm.
438–960 €
Read more”Measurlabs was extremely helpful in all our requests during the preceding months. When we had high time pressure to get analytical support, they handled all our requests swiftly. Whenever we have future analytical needs we will remember their excellent service.”
Erich Seger, H.B. Fuller Deutschland GmbH
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.