Hydrogen Fluoride (HF) in gas
Determination of the amount of hydrogen fluoride (HF) in a gas sample.
Testing is performed by pumping the gas through a gas trap, after which the content of the trap is analyzed.
The required pump and gas trap will be delivered to the customer before sampling. The customer performs the sampling and returns the equipment, upon which the analysis is performed.
The detection limit depends on the volume of the sampled gas. Please see the details below.
- Suitable sample matrices
- Gas
- Required sample quantity
- Depends on the HF concenration
- Typical turnaround time
- 3 weeks after receiving the samples
- Detection limit
- 12 µg/m3 with 100 L sampling, 8 µg/m3 with 200 L sampling
- Available quality systems
- Accredited testing laboratory
- Method expert
Price
Typical price (Excl. VAT):
499 €
We also charge a 97 € service fee per order.
Large batches of samples are eligible for discounts.
Questions? We're happy to help.
Questions? We're happy to help.
Business hours: Mon–Fri 9 AM – 5 PM Finnish time (EST/EEST)
Other tests we offer
Raman spectroscopy - gas samples
Analysis of gaseous samples using Raman spectroscopy.
541–797 €
Read moreVolatile organic compounds (VOC) in water
EPA 624, EPA 8015, EPA 8260, …
Determination of volatile organic compounds (VOC) in water using the GC-MS technique.
The analysis determines the concentrations of 67 volatile compounds including BTEX, DIPE, ETBE, MTBE, TAEE, TAME, and TBA.
The results of the analysis are reported in µg/l.
95 €
Read moreVolatile organic compound (VOC) emissions from solids and liquids
ISO 16000-6
Determination of the amount of volatile organic compounds (VOC) released by solid or liquid samples. The measurement is performed by placing the investigated sample in a chamber, through which nitrogen is flushed. The nitrogen is led through an absorption cartridge, which traps the VOC compounds. Upon completion of the gas collection, the trapped VOCs are analyzed with thermal desorption-gas chromatography (TD-GC). The measurement can either be performed at ambient temperature, or the sampling chamber can be heated.
409 €
Read moreBrominated fire retardants (BFRs) in construction materials
Analysis to screen a material for the presence of brominated fire retardants (BFRs), including polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs). The test is performed with a pyrolysis gas-chromatography mass spectrometer (py-GC-MS) according to the ISO 7270-1 standard. The sample is pyrolyzed, which is followed by separation and identification with GC-MS. The obtained pyrogram is then compared to a blank sample that does not contain any brominated fire retardants. We also offer the analysis for electrotechnical products as per IEC 62321-6. Please ask our experts for more information about this option.
285 €
Read moreSpecific surface area (BET)
BET (Brunauer–Emmett–Teller) analysis to determine the specific surface area of solid materials.
141–243 €
Read moreSubstances of very high concern (SVHC) analysis
The substances of very high concern (SVHC) analysis provides comprehensive material screening for SVHC substances as listed in the Registration, Evaluation, and Authorization of Chemical Substances (REACH). The maximum allowed concentration of any substance on the SVCH list is 0.1 mass-%. If the product contains more than 0.1% w/w of an SVHC substance, ECHA has to be notified and information on the safe use of the article must be provided to customers upon request. Contact us to request a quote for screening your material for SVHCs. The price of the analysis depends on the sample type.
400–600 €
Read moreRBS measurement
Rutherford Backscattering Spectrometry (RBS) can be used to measure the composition of solid samples quantitatively at the surface as well as depth profiling. RBS is used for the analysis of heavy elements and can be combined with ToF-ERDA when lighter elements also need to be analyzed. Elements with similar mass can be difficult to differentiate.
499–569 €
Read morePFAS in solid and liquid chemicals
Determination of perfluoroalkyl compounds (PFAS) in various types of chemical samples using the LC-MS technique. We offer several analysis packages that contain selected PFAS compounds. For example, the following package can be used for most chemical samples: Abbreviation Compound CAS number PFBA perfluorobutanoic acid 375-22-4 PFPeA perfluoropentanoic acid 2706-90-3 PFHxA perfluorohexanoic acid 307-24-4 PFHpA perfluoroheptanoic acid 375-85-9 PFOA perfluorooctanoic acid 335-67-1 PFNA perfluorononanoic acid 375-95-1 PFDA perfluorodecanoic acid 335-76-2 PFUnA; PFUdA perfluoroundecanoic acid 2058-94-8 PFDoA perfluorododecanoic acid 307-55-1 PFTrDA; PFTriA perfluorotridecanoic acid 72629-94-8 PFTeA perfluorotetradecanoic acid 376-06-7 PFHxDA perfluorohexadecanoic acid 67905-19-5 PFODA perfluorooctadecanoic acid 16517-11-6 PFBS perfluorobutanesulfonic acid 375-73-5 PFPeS perfluoropentanesulfonic acid 2706-91-4 PFHxS perfluorohexanesulfonic acid 355-46-4 PFHpS perfluoroheptanesulfonic acid 375-92-8 PFOS perfluorooctanesulfonic acid 1763-23-1 PFNS Perfluorononanesulfonic acid 68259-12-1 PFDS perfluorodecanesulfonic acid 335-77-3 PFUnDS perfluoroundecanesulfonic acid 749786-16-1 PFDoS perfluorododecanesulfonic acid 79780-39-5 HFPO-DA (Gen X) 2,3,3,3-Tetrafluoro-2-(heptafluoropropoxy)propanoic acid 13252-13-6 HFPO-TA perfluoro-2,5-dimethyl-3,6-dioxanonanoic acid 13252-14-7 DONA; ADONA 4,8-dioxa-3H-perfluorononanoic acid 919005-14-4 PFMOPrA perfluoro-3-methoxypropanoic acid 377-73-1 NFDHA perfluoro-3,6-dioxaheptanoic acid 151772-58-6 PFMOBA perfluoro-4-methoxybutanoic acid 863090-89-5 PFecHS cyclohexanesulfonic acid, 1,2,2,3,3,4,5,5,6,6-decafluoro-4-(1,1,2,2,2-pentafluoroethyl)-, potassium salt (1:1) 335-24-0 3:3 FTCA 2H,2H,3H,3H-perfluorohexanoic acid 356-02-5 5:3 FTCA 2H,2H,3H,3H-perfluorooctanoic acid 914637-49-3 7:3 FTCA 2H,2H,3H,3H-perfluorodecanoic acid 812-70-4 PFEESA perfluoro(2-ethoxyethane)sulfonic acid 113507-82-7 6:2 Cl-PFESA; 9Cl-PF3ONS 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid 756426-58-1 8:2 Cl-PFESA; 11Cl-PF3OUdS 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid 763051-92-9 4:2 FTSA; 4:2 FTS 4:2 fluorotelomer sulfonic acid 757124-72-4 6:2 FTSA; 6:2 FTS 6:2 fluorotelomer sulfonic acid 27619-97-2 8:2 FTSA; 8:2 FTS 8:2 fluorotelomer sulfonic acid 39108-34-4 FBSA perfluorobutane sulfonamide 30334-69-1 FHxSA perfluorohexanesulfonamide 41997-13-1 FOSA perfluorooctanesulfonamide 754-91-6 MeFOSA; N-MeFOSA n-methylperfluorooctanesulfonamide 31506-32-8 EtFOSA; N-EtFOSA n-ethylperfluorooctanesulfonamide 4151-50-2 MeFOSE n-methylperfluorooctanesulfonamidoethanol 24448-09-7 EtFOSE n-ethylperfluorooctanesulfonamidoethanol 1691-99-2 NMeFOSAA; MeFOSAA n-methylperfluorooctanesulfonamidoacetic acid 2355-31-9 NEtFOSAA; EtFOSAA n-ethylperfluorooctanesulfonamidoacetic acid 2991-50-6 FOSAA perfluorooctane sulfonamidoacetic acid 2806-24-8 10:2 FTS 10:2 Fluorotelomer sulfonic acid 108026-35-3 Target compounds and reporting limits can vary depending on the sample matrix. Typical limits of reporting vary from 1 to 50 ng/L for liquid samples and 1 to 100 μg/kg for solid samples. Contact us with a description of your samples and analysis goals, so that we can confirm method suitability and prepare a quotation.
250–450 €
Read moreMetal screening by ICP-SFMS (semi-quantitative)
This metal screening analysis includes the semi-quantitative determination of 70 elements. The method can be used, for example, to determine the background concentrations of metals in environmental samples or to study the elemental distribution of unknown samples. Screening is also often performed to assess which metals should be analyzed by a quantitative method. The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. A semi-quantitative determination of the following elements is included: Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr. However, please note that some elements may not be determinable due to matrix interference. During this semi-quantitative analysis, the instrument is calibrated for about 30 elements and the rest of the analytes are quantified using sensitivity factors for calibrated elements with similar mass and first ionization potential considering isotope abundances. Quantitative analysis is also available at an additional price. During this analysis, all elements are calibrated (excluding halogens and Os). Please ask for an offer for this service.
753 €
Read moreX-ray photoelectron spectroscopy (XPS)
XPS is a semi-quantitative technique used to measure the elemental composition of material surfaces. In addition, it can also determine the binding state of the atoms. XPS is a surface-sensitive technique. Typical probing depth is 3-9 nm, and detection limits range roughly between 0.1 and 1 atomic %. XPS can measure elements from Li to U. The elemental composition is reported in at.% and measured on 1 area of a few 100 µm. Upon request, we can measure smaller areas or depth profiles, and a binding state determination can also be provided. Measurements are typically performed using one of the following instruments: PHI Genesis, Thermo Fisher ESCALAB 250Xi, PHI Quantum 2000. Synchrotron XPS is also available. Contact us for more information and a quote for your project.
438–960 €
Read more”Measurlabs was extremely helpful in all our requests during the preceding months. When we had high time pressure to get analytical support, they handled all our requests swiftly. Whenever we have future analytical needs we will remember their excellent service.”
Erich Seger, H.B. Fuller Deutschland GmbH
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.