Hydrogen sulfide (H2S) content in natural gas or biogas
Determination of the hydrogen sulfide (H2S) content of natural gas or biogas samples.
Please contact Measurlabs experts to check the suitability of other sample vessels for the analysis.
- Suitable sample matrices
- Biomethane, biogas, natural gas
- Required sample quantity
- One multifoil bag (2.5 l)
- Typical turnaround time
- 2 – 3 weeks after receiving the samples
- Detection limit
- 1 ppm-vol
- Available quality systems
- Accredited testing laboratory
- Device types
- Standard
- Method expert
Price
Typical price (Excl. VAT):
469 €
We also charge a 97 € service fee per order.
Large batches of samples are eligible for discounts.
Questions? We're happy to help.
Questions? We're happy to help.
Business hours: Mon–Fri 9 AM – 5 PM Finnish time (EST/EEST)
Other tests we offer
Biomass fraction of CO2 emissions for carbon emissions trading
ASTM D6866
Determination of the biomass fraction of CO2 emissions generated from mixed fuel incineration, as required by the EU Emissions Trading System (ETS). CO2 originating from non-fossil sources like biomass has an emission factor of zero under EU ETS and is therefore not counted towards carbon emissions. This means that the biomass fraction of mixed fuels, such as municipal waste or solid recovered fuel (SRF), must be determined to calculate reportable emissions accurately. In this analysis, the proportion of biogenic carbon dioxide in total emitted CO2 from the incineration process is measured using the radiocarbon (14C) method. The measurement is based on the ASTM D6866 standard. This standard is equally rigorous and based on the same methodology as EN ISO 13833, which is mentioned in Commission Implementing Regulation (EU) 2018/2066 on the monitoring and reporting of greenhouse gas emissions. Testing is relevant for industrial plants that use mixed fuels and participate in emissions trading, as well as for municipal waste incineration (MWI) plants, which have been required to monitor and report emissions according to EU ETS since the beginning of 2024.
430 €
Read moreRaman spectroscopy - gas samples
Analysis of gaseous samples using Raman spectroscopy.
541–797 €
Read more13C stable isotope analysis
Classic stable isotope analysis of carbon (13C) with isotope-ratio mass spectrometry (IRMS). The results are reported in the unit VPDB, ‰. The analysis is suitable for various sample materials. Please contact the Measurlabs expert for more detailed information on the analysis.
Read more
Metal screening by ICP-SFMS (semi-quantitative)
This metal screening analysis includes the semi-quantitative determination of 70 elements. The method can be used, for example, to determine the background concentrations of metals in environmental samples or to study the elemental distribution of unknown samples. Screening is also often performed to assess which metals should be analyzed by a quantitative method. The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. A semi-quantitative determination of the following elements is included: Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr. However, please note that some elements may not be determinable due to matrix interference. During this semi-quantitative analysis, the instrument is calibrated for about 30 elements and the rest of the analytes are quantified using sensitivity factors for calibrated elements with similar mass and first ionization potential considering isotope abundances. Quantitative analysis is also available at an additional price. During this analysis, all elements are calibrated (excluding halogens and Os). Please ask for an offer for this service.
753 €
Read moreTotal organic fluorine (TOF) content in challenging sample materials (chemicals, oils, etc.)
ASTM D7359
Determination of the total organic fluorine (TOF) content in combustible materials by combustion ion chromatography (CIC). TOF analysis gives information about the total amount of organic fluorinated compounds. It can also be used to evaluate the presence of per- and polyfluoroalkyl substances (PFAS) in the material, even though individual PFAS compounds can't be analyzed with this method. The analysis is suitable for many different materials. Please describe the sample in detail when requesting an offer to help us prepare a quote quickly.
350–600 €
Read moreIdentification of chemical groups with FTIR (solid samples)
Qualitative identification of chemical groups in solid samples by Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Results will be delivered as an FTIR spectrum. In addition, a comparison to an FTIR library will be provided. The method is not quantitative, but it can be used to identify the main chemical components of the sample.
170 €
Read moreCHNOS analysis of organic materials
Determination of carbon, hydrogen, nitrogen, sulfur, and oxygen content of an organic sample. CHNS analysis (”LECO analysis”) is performed using a flash combustion method, where the sample is combusted under 25 kPa of O2 at an elevated temperature (1000 °C), followed by gas chromatography separation and detection using a thermal conductivity detector. Oxygen is analyzed by reduction on granulated carbon at 1480 °C, utilizing high-temperature thermal decomposition and conversion of oxygen into carbon monoxide before gas chromatography separation and detection with a thermal conductivity detector. The sample can be either solid or liquid, but water in the sample affects the results. In the case of aqueous samples, it is possible to dry the sample before analysis. The price includes two parallel measurements. The results are reported as wt-% of the initial sample. The ash, drying and dry loss measurements will increase the minimum required sample material need to 300 mg. The analysis gives the total carbon, hydrogen, nitrogen, sulfur, and oxygen content of the material, but it does not identify any chemical structures. The measurement can be combined with other methods, such as GC-MS, 1H, and 13C NMR, to perform substance structure identification. Possible element packages: O, CHNS, and CHNOS.
119–415 €
Read moreVolatile organic compounds (VOC) in water
EPA 624, EPA 8015, EPA 8260, …
Determination of volatile organic compounds (VOC) in water using the GC-MS technique.
The analysis determines the concentrations of 67 volatile compounds including BTEX, DIPE, ETBE, MTBE, TAEE, TAME, and TBA.
The results of the analysis are reported in µg/l.
95 €
Read moreBiobased carbon content according to ISO 16620
ISO 16620
The biobased carbon content is either reported as a fraction of the total organic carbon (TOC) or total carbon (TC). The price is for non-volatile samples. If your sample is volatile, please discuss the suitability of your sample type with our experts. Please also note that we cannot accept samples that contain artificial carbon-12, carbon-13, or carbon-14 isotopes because they will cause damage to the equipment.
686 €
Read moreAnalysis of natural gas or biogas according to ASTM D1945, ASTM D1946, or ASTM D3588
ASTM D1945, ASTM D1946, ASTM D3588
Quantification of heating value, CH4, CO2, O2, N2, H2, and C2–C5 alkanes in natural gas and biogas samples with gas chromatography. The sample can be shipped in a gas bag or preferably in an adsorbent tube. Standard methods available: ASTM D1945, ASTM D1946, ASTM D3588. Please contact our experts to check the suitability of other sample vessels.
654 €
Read more”The team is very experienced and can help even with the most challenging testing services.”
Sanna Liimatainen, Founder & Designer, Finishfire
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.