Chemical oxygen demand (COD) of pulp process liquids
The chemical oxygen demand (COD) of pulp process liquid is measured according to the ISO 6060 standard to evaluate the environmental burden of the water sample.
The sample must be kept at a temperature <5° C and analyzed within 5 days of sampling.
- Suitable sample matrices
- Pulp process liquid samples
- Required sample quantity
- 50 ml
- Typical turnaround time
- 3 weeks after receiving the samples
- Available quality systems
- Accredited testing laboratory
- Standard
- Method expert
Price
Typical price (Excl. VAT):
73 €
We also charge a 97 € service fee per order.
Large batches of samples are eligible for discounts.
Questions? We're happy to help.
Questions? We're happy to help.
Business hours: Mon–Fri 9 AM – 5 PM Finnish time (EST/EEST)
Other tests we offer
Metal screening by ICP-SFMS (semi-quantitative)
This metal screening analysis includes the semi-quantitative determination of 70 elements. The method can be used, for example, to determine the background concentrations of metals in environmental samples or to study the elemental distribution of unknown samples. Screening is also often performed to assess which metals should be analyzed by a quantitative method. The measurement is performed using a high-resolution ICP-MS technique (ICP-SFMS), which can identify very low elemental concentrations. A semi-quantitative determination of the following elements is included: Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, Ir, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr. However, please note that some elements may not be determinable due to matrix interference. During this semi-quantitative analysis, the instrument is calibrated for about 30 elements and the rest of the analytes are quantified using sensitivity factors for calibrated elements with similar mass and first ionization potential considering isotope abundances. Quantitative analysis is also available at an additional price. During this analysis, all elements are calibrated (excluding halogens and Os). Please ask for an offer for this service.
753 €
Read moreCHNOS analysis of organic materials
Determination of carbon, hydrogen, nitrogen, sulfur, and oxygen content of an organic sample. CHNS analysis (”LECO analysis”) is performed using a flash combustion method, where the sample is combusted under 25 kPa of O2 at an elevated temperature (1000 °C), followed by gas chromatography separation and detection using a thermal conductivity detector. Oxygen is analyzed by reduction on granulated carbon at 1480 °C, utilizing high-temperature thermal decomposition and conversion of oxygen into carbon monoxide before gas chromatography separation and detection with a thermal conductivity detector. The sample can be either solid or liquid, but water in the sample affects the results. In the case of aqueous samples, it is possible to dry the sample before analysis. The price includes two parallel measurements. The results are reported as wt-% of the initial sample. The ash, drying and dry loss measurements will increase the minimum required sample material need to 300 mg. The analysis gives the total carbon, hydrogen, nitrogen, sulfur, and oxygen content of the material, but it does not identify any chemical structures. The measurement can be combined with other methods, such as GC-MS, 1H, and 13C NMR, to perform substance structure identification. Possible element packages: O, CHNS, and CHNOS.
119–415 €
Read moreCharacterization of polymers by py-GC-MS
Pyrolysis gas chromatography-mass spectrometry (py-GC-MS) analysis to determine the identity of an unknown polymer sample. During the measurement, the sample is instantaneously heated in an inert atmosphere or vacuum. This causes the sample to decompose into smaller molecular fragments which are then analyzed with GC-MS. Different types of polymers can be identified by their unique decomposition products. This includes, but is not limited to: PE, PP, PS, ABS, PMMA, PET, PC, PVC, polyamides, natural & synthetic rubbers, and more. The price includes the basic preparation and analysis of the sample. More extensive sample preparation is subject to additional costs.
542 €
Read moreParticle size distribution with TEM
Particle size distribution (PSD) is determined from transmission electron microscopy (TEM) images. The method is most suitable for small particles of 50 nm or smaller. Depending on particle shapes, the method includes calculating the diameters or lengths and widths of particles. In addition to size, TEM provides qualitative information about the surface morphology of the particles. TEM is a good option for irregularly shaped and non-spherical particles such as fibers, rods, and crystals that cannot be characterized meaningfully with traditional methods, including laser diffraction (LD) and dynamic light scattering (DLS). As a result of the analysis, TEM images and the determined particle size distribution for diameter (or length and width) are delivered. Dry samples are suitable for TEM as is. If the particles are wet or dispersed in a solvent, the sample may be dried with a suitable sample preparation method before imaging.
1,551–2,111 €
Read moreLignin ash content
NREL/TP -510-42622
Lignin sample ash content measurement at 525°C. The result is expressed as a mass percentage of the ash from the initial sample on a dry matter basis.
99 €
Read moreBrominated fire retardants (BFRs) in construction materials
Analysis to screen a material for the presence of brominated fire retardants (BFRs), including polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs). The test is performed with a pyrolysis gas-chromatography mass spectrometer (py-GC-MS) according to the ISO 7270-1 standard. The sample is pyrolyzed, which is followed by separation and identification with GC-MS. The obtained pyrogram is then compared to a blank sample that does not contain any brominated fire retardants. We also offer the analysis for electrotechnical products as per IEC 62321-6. Please ask our experts for more information about this option.
285 €
Read moreTotal organic carbon (TOC)
EN 1484, EN 16192
Determination of total organic carbon (TOC) content of water samples. The results of the analysis will be reported in mg/l.
50 €
Read moreSpecific surface area (BET)
BET (Brunauer–Emmett–Teller) analysis to determine the specific surface area of solid materials.
141–243 €
Read moreTotal organic carbon (TOC) in ultrapure water
Determination of the total organic carbon content (TOC) in an ultrapure water sample. The sample must be collected in a TOC vial designed for ultrapure water. We can provide the required sample vessels upon request.
225 €
Read moreMicroplastics in natural water or wastewater with the micro-FTIR method
ISO 24187
Determination of microplastics in wastewater using FTIR microspectroscopy. The results of the analysis will specify different types of polymers by size, for example, 10–50 µm, 50–100 µm, 100–500 µm, and >500 µm. This analysis is suitable for natural waters and typical wastewater samples. Please note that both of these matrices need digestion sample preparation due to the possible solid particles in the samples. For special water matrices (process water, industrial water, etc.), please contact the method expert before ordering.
390 €
Read more”Excellent service. Measurlabs chose analysis methods for our demanding sample, interpreted the results and delivered a thorough analysis report. We would buy again.”
Antti Tullila, Senior Development Manager, Aidian
Ask for an offer
Fill in the form, and we'll reply in one business day.
Have questions or need help? Email us at info@measurlabs.com or call our sales team.